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1.Introduction 

1. Introduction 
 

1.1. What is MARBLE? 
MARBLE (MoleculAR simulation program for BiomoLEcules) is a molecular simulation program 

developed to carry out simulations of various biopolymers including proteins. 
 
The features of MARBLE are as follows:  
 It employs a symplectic rigid-body time integration scheme, achieving total energy conservation with 

high precision. 
 It implements the PME (Particle Mesh Ewald), a standard algorism for calculating long-range 

interactions. 
 It is compatible with the OpenMP multiprocessing framework, where the computation is parallelized 

based on divisions of the simulation system space. 
 
 

1.2. License 
The license of MARBLE conforms to the GPL (GNU General Public License). 
 
 

1.3. Citation 
When publishing research results using MARBLE, please cite the following article:  
Ikeguchi M (2004) Partial rigid-body dynamics in NPT, NPAT and NPγT ensembles for proteins and 

membranes. J Comput Chem 25(4): 529-541. 
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2.Installation 

2. Installation 
This section describes the installation procedure for several particular machines, as well as for the other 

computing systems. (The "$" character in the description below indicates a command prompt.) 
 

 Installation procedure for the K computer 
$ tar xvfz marble-x.x.x.tar.gz 
$ cd marble-x.x.x/src 
$ ln –s Makefile.machine.K Makefile.machine 
(Here, "Makefile.machine.K" is the file dedicated to the K computer.) 
$ make 
$ make install 

 
Then, the execution files "marble.x.x.x_K" and "molx.x.x.x_K" are generated in the directory 

"marble-x.x/bin/". 
*All files generated here are the execution files to submit to calculation nodes. 
 

 Installation procedure for the FX10 
$ tar xvfz marble-x.x.x.tar.gz 
$ cd marble-x.x.x/src 
$ ln –s Makefile.machine.FX10 Makefile.machine 
(Depending on the system environment, it may be required to load the FFTW using the "module" 
command as follows.) 
$module load fftw 
$ make 
$ make install 

 
Then, the execution files "marble.x.x.x_FX10" and "molx.x.x.x_FX10" are generated in the directory 

"marble-x.x/bin/". 
*All files generated here are the execution files for calculation nodes. 
 

Installation procedure for the Cray XE6 
$ tar xvfz MARBLE-x.x.x.tar.gz 
$ cd MARBLE-x.x.x/src 
$ cd src 
$ ln -s Makefile.machine.cray Makefile.machine 
(Here, "Makefile.machine.cray" is the file dedicated to the Cray XE6.) 
$ module load PrgEnv-cray 
$ module load fftw 
$ make 
$ make install 

 
Then, the execution files "marble.x.x.x_cray" and "molx.x.x.x_cray" are generated in the directory 

"marble-x.x/bin/". 
*The marble.x.x.x-cray is the execution file for calculation nodes 
*The molx.x.x.x-cray is the execution file for calculation nodes 
 

Installation procedure for other computers 
The MARBLE operation has currently been confirmed only on the three computing systems above. Even 

so, it should work on many other parallel computers since the program is written in C language with OpenMP, 
MPI and FFTW3. To install MARBLE to a system other than above, use the following procedure:  
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2.Installation 

 
(1) Installing the FFTW3 

Check whether or not the FFTW3 exists in the system where MARBLE is installed. If it does, check 
the compilation procedure by referring to the FFTW3 manuals, and proceed to the next procedure "(2) 
Modifying the Makefile.machine file". If not, download the FFTW 3.x from the following link and 
install it to your environment:  

 
http: //www.fftw.org/ 

 
(2) Modifying the Makefile.machine file 

Copy the "Makefile.machine.x (x=intel, gnu)" located in the directory "marble-x.x.x/src" 
changing the filename to "Makefile.machine". Then modify the file in accordance with the 
installation environment. The content of "Makefile.machine" is as follows:  
 

> more Makefile.machine 
# 
# Makefile Setting for icc + openmpi 
#  
 
# for parallel programs 
PCC = mpicc # C compiler for MPI programs 
PCOPTFLAG = -std=gnu99 -O3 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE 
  #Optimization option 
PCOMPFLAG = -openmp -D_OPENMP # OpenMP option 
PLD = mpicc # Linker for MPI programs 
PLIBFLAG = # Flag of linked libraries (e.g., -lm) 
PARCH = -intel # Suffix of the system to be compiled 
   
# for serial programs  
CC = icc # C compiler for serial programs 
COPTFLAG = $(PCOPTFLAG) # Optimization option for serial programs 
LD = icc # Linker for serial programs 
LDFLAG = # Linker flag for serial programs 
LIBFLAG = # Flag of linked libraries (e.g., -lm) 
LIBDIR = # Flag of directory of linked library 
ARCH = $(PARCH) # Suffix of the system to be compiled 
   
MARBLEHOME = ../..  
BINDIR = $(MARBLEHOME)/bin # Installation directory of execution file 
DATDIR = $(MARBLEHOME)/data # Installation directory of data file 
   
# for FFTW   
FFTW_DIR = /home/xxx/pub/fftw-3.3.2-install # Installation destination of FFTW 
FFTW_INCLUDE = $(FFTW_DIR)/include # FFTW header directory 
FFTW_LIBDIR = $(FFTW_DIR)/lib # FFTW library directory 
FFTW_LIB  = $(FFTW_LIBDIR)/libfftw3.a # FFTW library 

 
(3) Executing "make" and "make install" 
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3.Tutorials 

3. Tutorials 
 

3.1. Calculation flow 
MARBLE carries out molecular simulations with the following calculation processes. 
The user is first required to prepare structural data of the target molecule in PDB format files (i.e. the files 

in the format for structural data in the Protein Data Bank, hereafter called "pdb files"). 
 

3.1.1. Executing the molx 
 Usage: molx input_file 

Using the molx, construct the desired simulation system for the target molecule, and generate data files 
containing structural data, force field parameters, etc., necessary for the MARBLE calculation. 

 
The molx executes the following procedure based on the pdb file of the target molecule:  
 Adds hydrogen atoms and chemical modifications (e.g. disulfide bonds, etc.), on target molecule 

(model building) 
 Constructs the molecular simulation system by defining a periodic boundary box and adding water 

molecules, ions, etc. (system building) 

 
MARBLE calculation flow 
 
 

3.1.2. Files generated in the molx 
The molx generates the following files containing the data of the constructed simulation system. 
 

pdb file 
This is the pdb format file of the entire constructed system. 
 

crd file 
This file contains the coordinate data of the entire constructed system. MARBLE performs calculations 

using the coordinate data in this file. 
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mdat file 
This file contains the force field parameters for the constructed system used to carry out molecular 

dynamics simulations. 
 

3.1.3. Executing MARBLE 
 Usage: marble input_file output_file 

Using the crd and mdat files generated in the molx, perform molecular simulations with MARBLE. 
 
MARBLE performs calculation by the following three steps:  
(1) Energy minimization 
(2) Equilibration 
(3) Production run 
 
These calculations are performed based on crd files obtained from the previous calculation, as well as 

mdat files generated in the molx. 
 

3.1.4. Files generated in MARBLE 
MARBLE generates the following files:  
 

pdb file 
This file contains the coordinate data of the final structure of the simulation system during MARBLE 

execution. 
 

crd file 
 This file contains the final data sets of the simulation system. (Note that during molecular dynamics 

simulations, the output also includes the final coordinates, velocity, simulation ensemble, periodic boundary box 
data and temperature/pressure control parameters.) The user can restart the molecular dynamics simulation with 
the same condition by using this file. 

 
trj file 

During molecular dynamics simulations, the system time course data (coordinate sets, velocity sets and 
periodic boundary box data) are written to trj files. The user can specify the data content to save in trj files, as 
well as the time intervals to save these data, using input files. 

 
out file 

This file contains user readable information of molecular simulation such as energy, pressure, temperature, 
calculation speed, etc. The user can specify the time intervals to save these data, using input files. 

 
prop file 

Outputs various change amounts during calculation. (Some of the information is the same as that of out 
files.) 
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3.1.5. Parallel computation in MARBLE 
MARBLE has been developed to perform hybrid parallelization with MPI and OpenMP. MARBLE 

performs simulating calculations while parallelizing the processes as shown in the figure below:  
 

 
Cell divisions and process arrangement in MARBLE 
 
 Dividing the simulation system space into multiple cells at even intervals in X, Y, and Z directions (i.e. 

the cubes indicated with dotted lines in Figure (1)). 
 Arranging the processes for parallel computation in X, Y, and Z directions (i.e. the cubes enclosed with 

red lines in Figure (2)). 
 Dividing each of the arranged processes so that the fragmented process takes charge in the calculation 

of multiple neighboring cells located in the space where the process is arranged. 
 
In order to speed up simulations, MARBLE parallelizes computing processes as above, and permits data 

communications only between neighboring cells. 
 
For this reason, performing MARBLE calculation requires the following data:  
(a) The number of cell divisions in the system in X, Y, and Z directions 
(b) The number of processes used 
(c) The number of processes arranged in X, Y, and Z directions 
The data (a) determines the state in Figure (1), and the data (b) and (c) determine that in Figure (2). 
 
Furthermore, on top of (a) to (c) above, the following item is also required:  
 
(d) The number of grids made by dividing the space at even intervals in X, Y, and Z directions to calculate 

electrostatic interactions with PME (Particle Mesh Ewald) method 
 
The items (a) to (d) must be determined so that they satisfy their specific rules. 
 
To specify these data parameters for MARBLE calculations, there are the following two methods:  
 

(1) Setting up the d_grid 
In this method, once the user specifies the data (b) (the number of processes), and the grid interval 
(d_grid) used for PME grid definition, the program automatically determines the data (a), (c), and (d), 
and performs calculation.  
With this method, the user can easily determine the data (a) to (d). However, when the system box 
size is changed as in NPT ensembles, the numbers of grids and cell divisions for PME may also 
change. In this case, energy may not be conserved properly, particularly when performing molecular 
simulations continuously with different input files. 

 
(2) Directly entering the data (a) to (d) in input files 

As described above, although the user can easily determine the data (a) to (d) by using d_grid, the 
number of grids for PME method (data (d)) may change depending on the box size. The method 
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above is thus unsuitable for box-size variable simulations (such as in NPT ensemble), where the 
number of grids for PME method, as well as the PME accuracy, may change at a restart of 
simulations. 
To avoid these difficulties, the user can directly enter the data (a) to (d) in input files. 
 
See the chapter 4 for the actual settings and examples of executing the above parallel computation. 
 
Note that the procedure for specifying the number of processes and submitting jobs during MPI 
parallel computation vary depending on the computing system. For those procedures, refer to the 
user's manual for each computing system. 

 
 

3.2. Constructing the system with the molx 
 

3.2.1. Before executing the molx 
MARBLE is designed to carry out molecular simulations with the CHARMM force field. Before using 

MARBLE, download necessary CHARMM force fields from the following website:  
 

http: //mackerell.umaryland.edu/CHARMM_ff_params.html 
 
The molx requires the system coordinates in order to generate two files (mdat and crd files) necessary for 

MARBLE execution. It is ideal in that the user can prepare the coordinate data of water molecules, ions, all 
atoms in protein molecules with hydrogen, and periodic boundary box data. If the user has created a pdb file 
containing all these data with an external program, the molx can generate the mdat and crd files immediately. 

 
However, it is rare that the user can prepare the complete structure of target protein molecules with 

hydrogen, let alone the data of aqueous solution of the simulation system. Furthermore, the actual target protein 
may involve unique chemical bonds, such as disulfide bonds, in its structure. In this case, it is necessary to 
complement the data to the simulation system. 

 
For this reason, the molx implements the modeling functions (model building and system building) to 

complement the missing data to the simulation system. 
 
The modeling functions available in the molx are as follows:  
 
(1) Complementing atoms missing in the protein conformation (model building) 

The molx complements all missing hydrogen and side chain atoms according to the structure template 
of each amino acid available in the CHARMM force field. 

 
(2) Defining chemical modifications such as disulfide bonds (model building) 

Some proteins may involve chemical modifications where amino acids bind to various molecules or 
bind each other as in disulfide bonds. The molx can reproduce these chemical modifications using the 
"patch" command. 

 
(3) Generating water molecules and ions around the protein to construct aqueous solution system (system 

building) 
The molx defines a periodic boundary box, places the protein in the center, and then places water 
molecules and ions to generate a protein-aqueous solution system. 
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3.Tutorials 

Before executing the molx, be sure therefore to check the target protein conformation regarding the 
following items:  
 
(a) Any missing atoms in the protein 

Check if there is any missing heavy atom other than hydrogen. If there is any domain involving 
the main chain where no atomic coordinate data exist, the molx may not be able to complement 
the missing atoms properly. In this case, complement the missing data with an external modeling 
program, such as "modeller", before the molx execution. 

 
(b) Any multiconformer 

Some data of protein crystal structure may contain multiple side chain conformations as 
multiconformer. In this case, since the molx cannot determine which side chain data to be used 
for computation, the user is required to decide which conformation to use and edit the pdb file 
accordingly.  

 
(c) Determining protonation state of amino acid 

Charged amino acids and polar amino acids (such as aspartic acid, glutamic acid, lysine, arginine, 
and histidine) have multiple protonation states on side chains and the states keep changing due to 
the local environment. In this case, the user is required to determine which protonation state to 
employ for the relevant amino acid side chain before actual computation. Note in particular that 
histidine has two states where the side chain charge is neutral, and the states vary depending on 
the formulation of hydrogen bonds with surrounding atoms (see the figure below). 
 

 
Examples of protonation states of histidines 

 
(d) Any disulfide bond 

The molx cannot determine if there is any disulfide bond only from the coordinate data in pdb 
files. The user is required to check it by referring to the SSBOND data in pdb files, etc. 

 
3.2.2. Example of the molx calculation – 1:  Lysozyme 

This section describes an example of executing the molx on the lysozyme crystal structure (PDB_ID: 
193L). 

 
3.2.2.1. Before executing the molx 

First check the items (a) to (d) in the previous section "3.2.1 Before executing the molx". 
 
(a) Any missing atoms in the protein 

There is no missing heavy atom in 193L. 
 
(b) Any multiconformer 

In the 193L structure, two conformers exist for each of LYS1, ASN59, SER86, and VAL109. Here, we 
select the conformer A for each side chain, and modify the PDB file while referring to the 
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OCCUPANCY value. The following figure describes the example of modifying LYS1. 
 

 
 
Modifying multiconformers 

 
(c) Determining protonation state of amino acid 

Define all existing charged amino acids to be in a charged state. Now, note that histidine has three 
protonation states as mentioned in "Before executing the molx", and two of them, HSD and HSE, 
have neutral side chains. Although HIS51 exists in 193L, select HSE here. 

 
(d) Any disulfide bond 

The SSBOND description in the PDB file header indicates that the 193L has four disulfide bonds, as 
shown below:  

 
3.2.2.2. Executing the molx 

Considering the items above, create an input file to execute the molx. The following shows an example of 
constructing a water system using the PDB file of the lysozyme X-ray structure (193L.pdb). 

(The ">" character indicates a command prompt.) 
> more molx2.in 
#Force field# 
charmm_top_file ../../toppar/top_all27_prot_na.rtf 
charmm_par_file ../../toppar/par_all27_prot_na.prm 
 
#Input# 
input_pdb_file ../../pdbfile/193L.pdb 
 
#Output# 
output_mdat_file 193L_w.mdat 
output_crd_file 193L_w.crd 
output_pdb_file 193L_w.pdb 
 
#Model building# 
alias CD CD1 
alias HOH TIP3 
alias O OH2 
alias O OT1 
rename_residue 15A HSE 
patch DISU 6A 127A 
patch DISU 30A 115A 
patch DISU 64A 80A 
patch DISU 76A 94A 
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patch_ter NTER 1A 
patch_ter CTER 129A 
 
#System building# 
solvent_pdb_file watbox216.pdb 
solvent_cube on 
align_axis diagonal 
solvent_buffer 15 
ion_placement random 
ion SOD CLA 

 
The content of the molx input file is as follows:  
 

# Force field# 
The force field for this calculation is specified as follows:  
 charm_top_file ../../toppar/top_all27_prot_na.rtf 

Specifies the top file of the charmm27 force field for proteins and nucleic acids (top_all27_prot_na.rtf). 
 charm_par_file ../../toppar/par_all27_prot_na.prm 

Specifies the par file of the charmm27 force field for proteins and nucleic acids 
(par_all27_prot_na.prm). 

 
#Input# 
 input_pdb_file ../../pdbfile/193L.pdb 

Specifies the file containing the structure of the calculation target molecule (193L.pdb). 
 

#Output# 
 output_mdat_file 193L_w.mdat 

Specifies the name of the mdat file output by executing the molx as "193L_w.mdat". 
 output_crd_file 193L_w.crd 

Specifies the name of the crd file output by executing the molx as "193L_w.crd". 
 output_pdb_file 193L_w.pdb 

Specifies the name of the pdb file output by executing the molx as "193L_w.pdb". 
 

#Model building#  
The following items are specified:  
 The alias command changes the atomic names used in the input PDB file to those in the CHARMM 

force field. 
 The rename_residue command defines the histidine protonation state by renaming the residue name 

of HIS51 to HSE. 
 The patch command applies the DISU patch defining disulfide bonds. 
 The patch_ter command applies the NTER and CTER patches defining the N- and C-terminus 

structures, respectively. 
 

The "patches" are the scripts to specify chemical modifications (such as disulfide bond and 
protonation state) prepared in the CHARMM force field. For the types of patches and their usage, refer 
to the CHARMM top files. 

 
In the example above, the residues in "rename_residue", "patch", and "patch_ter" are specified in 
the order of residue number and chain ID, as in "patch DISU 6A 127A". Even so, the specification 
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can be made in the reverse order, as in "patch DISU A6 A127". Write the chain ID first particularly 
when the residue number is a negative value. 

 
#System building# 

The box, solvent, and ions for simulations are set up by the following processes:  
 solvent_pdb_file watbox216.pdb 

Specifies the original structure of water molecules to "watbox216.pdb", where 216 water molecules 
are randomly arranged in the cube with a side length of 18.77Å. By arranging water data in this file 
periodically, the user can fill water in the periodic boundary box defined in the next step. 

 solvent_cube on 
Specifies the periodic boundary box as a cube. 

 align_axis diagonal 
Specifies how to place the protein in the defined periodic boundary box. The molx defines a periodic 
boundary box by arranging water with the thickness specified with "solvent_buffer", from the 
maximum and minimum coordinates of the protein in X, Y, and Z directions. 
The "align_axis diagonal" aligns the longitudinal direction of the protein's principal axis of inertia to 
the box diagonal line. (This operation allows decreasing the size of the periodic boundary box). 

 solvent buffer 15 
Specifies the solvent thickness of 15Å from the protein placed at the center of the periodic boundary 
box to each box face. 

 ion_placement random 
Places ions randomly in the simulation system. 

 ion SOD CLA 
Specifies chlorine ions (CLA) and sodium ions (SOD) for anions and cations, respectively. Any other 
ions in the CHARMM file can also be specified. (Refer to the top file, etc.) Note that only monovalent 
ions can be used for anions and cations. Be sure to place ions with the minimum amount necessary to 
neutralize the total charge of the system. 

 
When executing the molx with the input file above, the output is as follows:  
 

> molx.0.5.11b molx.in 
**************************************** 
  Molx (Version 0.5.11b) 
  Host: bits1 
  Date: Wed Aug 22 12:26:17 2012 
  Control File: molx.in 
**************************************** 
 
CHARMM TOP FILE: ../../toppar/top_all27_prot_na.rtf 
 Version 31.1 
 Number of types of atomic mass : 158 
 Number of residues : 37 
 Number of residues for patching : 31 
 
CHARMM PAR FILE: ../../toppar/par_all27_prot_na.prm 
 Number of bond types: 257 
 Number of angle types: 656 
 Number of dihedral types: 1127 
 Number of improper dihedral types: 70 
 Number of cmap dihedral types: 6 
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 Number of nonbonded atom types: 158 
 Number of modified nonbonded atom pairs: 0 
 
PDB FILE: ../../pdbfile/193L.pdb 
 Number of atoms : 1001 
 Number of hetero atoms : 144 
 Number of residues : 273 
 
Renaming residue 15A HIS -> HSE 
Warning: CMAP term not assigned: -C N CA C N CA C +N in residue 1A 
Warning: CMAP term not assigned: -C N CA C N CA C +N in residue 129A 
Patching DISU to CYS(6A) and CYS(127A) 
Patching DISU to CYS(30A) and CYS(115A) 
Patching DISU to CYS(64A) and CYS(80A) 
Patching DISU to CYS(76A) and CYS(94A) 
Patching NTER to LYS(1A) 
Patching CTER to LEU(129A) 
1243 atoms are missing in pdb file. 
 
Coordinates of hydrogens of 142 crystal waters are generated. 
All Coordinates are determined. 
 
142 waters are found in input pdb file. 
1 cations are found in input pdb file. 
1 anions are found in input pdb file. 
 
Align principal axes of molecules. 
Align the longest axis to diagonal of a cube 
Setup of Solvation. 
Minimum and maximum coordinates of solute: 
  (-19.13,-16.18,-22.41)-(19.67,17.41,20.26) 
solvent_buffer 15.00 Angstrom 
solvent_cube option: on 
All atoms are shifted: (36.06,35.72,37.41) 
Simulation box is configured as (72.66,72.66,72.66) 
Solvent PDB file: 
PDB FILE: watbox216.pdb 
 Number of atoms : 648 
 Number of hetero atoms : 0 
 Number of residues : 216 
Box Size of Input Solvent PDB: (18.77,18.77,18.77) 
Duplicated: (4,4,4) 
solvent_radius 1.40 Angstrom 
solvent_exclusion_layer 0.00 Angstrom 
ION: Grid Spacing (1.00,1.00,1.00) 
ION: Number of Grid (73,73,73) 
ION: placement random 
ION: ion_cutoff 7.40 Angstrom 
ION: solvent_radius 1.40 Angstrom 
ION: ion_exclusion_layer 4.00 Angstrom 

13 
 



3.Tutorials 

ION: ion2_exclusion_layer 2.00 Angstrom 
ION: Starting to Charge Grid Done 
ION: SOD 0, CLA 8 
ION: anion CLA (10.09,10.13,9.55) by random 
ION: anion CLA (14.35,3.11,6.71) by random 
ION: anion CLA (12.82,16.72,43.93) by random 
ION: anion CLA (16.77,45.42,33.76) by random 
ION: anion CLA (9.53,31.58,28.33) by random 
ION: anion CLA (4.50,22.08,30.62) by random 
ION: anion CLA (33.41,62.03,52.86) by random 
ION: anion CLA (38.16,15.64,8.34) by random 
ION: SOD 0, CLA 8 
 
PDB FILE: configured_solvent 
 Number of atoms : 34878 
 Number of hetero atoms : 0 
 Number of residues : 11626 
 
0 atoms are missing in pdb file. 
Molecular Data (mdat) Information: 
 Number of atoms: 37274 
 Number of atom types: 37 
 Number of residues: 11907 
 Number of molecules: 11779 
 Number of bonds: 37288 
 Number of bond types: 69 
 Number of angles: 15315 
 Number of angle types: 151 
 Number of dihedrals: 5187 (term: 5391) 
 Number of dihedral types: 185 
 Number of impropers: 351 
 Number of improper types: 14 
 Number of cmap terms: 127 
 Number of cmap types: 4 
 Number of solute molecules: 1 
Total charge: -0.000000 
Periodic Boundary Box: 
72.66 0.00 0.00 
0.00 72.66 0.00 
0.00 0.00 72.66 

 
3.2.3. Example of the molx calculation – 2:  F1 motor 

This section describes an example of executing the molx on a dimer (chains B and F) on the F1 motor 
crystal structure (PDB_ID: 2JBI). 

 
3.2.3.1. Before executing the molx 

First check the items (a) to (d) in the previous section "3.2.1 Before executing the molx". 
 
(a) Any missing atoms in the protein 

On the chains B and F for 2JBI calculation, the positional data of all atoms are missing in the domains 
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in the following residue ranges:  
 

chain B:  Residue ranges 1 to 22 and 402 to 409 
chain F:  Residue ranges -4 to 9 and 475 to 478 

 
Among these domains, the 402 to 409 on the chain B is located in the middle of a protein. The chain 
B will be separated if the structural data of this region does not exist. We here therefore construct the 
missing coordinate data of this region using the "modeller". We can leave the rest of the regions as 
they are, since they are N- or C-terminus and no functional effect will occur even though the data are 
missing. 

 
(b) Any multiconformer 

No multiconformer exist in the chains B and F structures on 2JBI. 
 
(c) Determining protonation state of amino acid 

Define all existing charged amino acids to be in a charged state. Now, note that histidine has three 
protonation states as mentioned in "Before executing the molx", and two of them, HSD and HSE, 
have neutral side chains. In the structure of 2JBI, the chain B has five histidines (residue numbers 42, 
263, 302, 471, and 476) and the chain F has eight histidines (52, 117, 177, 198, 328, 367, 427, and 
451). Here, we define the protonation state as follows:  

 
chain B: 42(HSD), 263(HSD), 302(HSE), 471(HSD), 476(HSD) 
chain F: 52(HSE), 117(HSE), 177(HSE), 198(HSD), 328(HSD), 367(HSE), 427(HSD), 
451(HSE) 

 
(d) Any disulfide bond 

No disulfide bond exists in 2JBI. 
 
 
 

3.2.3.2. Executing the molx 
Considering the items above, create an input file to execute the molx. 
The following shows an example of constructing a water system using the PDB file of the chains B and F 

on the F1 motor X-ray structure (2JBI_BFsub.pdb), modified with modeling data. 
(The ">" character indicates a command prompt.) 
 

> cat molx.in 
#Force field# 
charmm_top_file toppar/top_all27_prot_na.rtf 
charmm_par_file toppar/par_all27_prot_na.prm 
charmm_toppar_file toppar/stream/toppar_all27_na_nad_ppi.str 
charmm_toppar_file toppar_all27_na_po4.str 
 
#Input# 
input_pdb_file 2JDI_BFsub.pdb 
 
#Output# 
output_mdat_file 2JDI_BFsub_molx.mdat 
output_crd_file 2JDI_BFsub_molx.crd 
output_pdb_file 2JDI_BFsub_molx.pdb 
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#Model building# 
alias ANP ATP 
alias N3B O3B 
alias OXT OT2 
alias O OT1 
alias CD CD1 
alias HOH TIP3 
alias WAT TIP3 
alias OW OH2 
alias O OH2 
alias O OT1 
alias H1 HT1 
alias H2 HT2 
alias H3 HT3 
alias H HN 
alias HG HG1 
alias HD11 HD1 
alias HD12 HD2 
alias HD13 HD3 
alias NA SOD 
alias CL CLA 
rename_residue 42B HSD 
rename_residue 263B HSD 
rename_residue 263B HSD 
rename_residue 302B HSE 
rename_residue 471B HSD 
rename_residue 476B HSD 
rename_residue 52F HSE 
rename_residue 117F HSE 
rename_residue 177F HSE 
rename_residue 198F HSD 
rename_residue 328F HSD 
rename_residue 367F HSE 
rename_residue 427F HSD 
rename_residue 451F HSE 
 
patch_ter NTER 23B 
patch_ter CTER 510B 
patch_ter NTER 9F 
patch_ter CTER 474F 
 
#System building# 
solvent_pdb_file watbox216.pdb 
solvent_buffer 14 
align_axis on 
ion SOD CLA 
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The content of the molx input file is as follows:  
 

# Force field# 
The force field for this calculation is specified as follows:  
 charm_top_file toppar/top_all27_prot_na.rtf 

Specifies the top file of the charmm27 force field for proteins and nucleic acids (top_all27_prot_na.rtf). 
 charm_par_file toppar/par_all27_prot_na.prm 

Specifies the par file of the charmm27 force field for proteins and nucleic acids 
(par_all27_prot_na.prm). 

 charm_toppar_file toppar/toppar_all27_na_nad_ppi.str 
Specifies the toppar file of the charmm27 force field for ATP (toppar_all27_na_nad_ppi.str). 

 charm_toppar_file toppar_all27_na_po4.str 
Specifies the toppar file of the charmm27 force field for phosphoric acid (toppar_all27_na_po4.str). 

 
#Input# 
 input_pdb_file 2JDI_BFsub.pdb 

Specifies the file containing the structure of the calculation target molecule (2JDI_BFsub.pdb). 
 

#Output# 
 output_mdat_file 2JDI_BFsub_molx.mdat 

Specifies the name of the mdat file output by executing the molx as "2JDI_BFsub_molx.mdat". 
 output_crd_file 2JDI_BFsub_molx.crd 

Specifies the name of the crd file output by executing the molx as "2JDI_BFsub_molx.crd". 
 output_pdb_file 2JDI_BFsub_molx.pdb 

Specifies the name of the pdb file output by executing the molx as "2JDI_BFsub_molx.pdb". 
 

#Model building#  
The following items are specified:  
 The alias command changes the atomic names used in the input PDB file to those in the CHARMM 

force field. 
 The rename_residue command defines the histidine protonation state by renaming the residue name. 
 The patch_ter command applies the NTER and CTER patches to the structure definition of the N- 

and C-terminus on chains B and F, respectively. 
 
In the example above, the residues in "rename_residue", "patch", and "patch_ter" are specified in the 

order of residue number and chain ID, as in "patch DISU 6A 127A". Even so, the specification can be made 
in the reverse order, as in "patch DISU A6 A127". Write the chain ID first particularly when the residue 
number is a negative value. 

 
#System building# 

The box, solvent, and ions for simulations are set up by the following processes:  
 solvent_pdb_file watbox216.pdb 

Specifies the original structure of water molecules to "watbox216.pdb", where 216 water molecules 
are randomly arranged in the cube with a side length of 18.77Å. By arranging water data in this file 
periodically, the user can fill water in the periodic boundary box defined in the next step. 

 solvent_cube on 
Specifies the periodic boundary box as a cube. 

 align_axis diagonal 
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Specifies how to place the protein in the defined periodic boundary box. The molx defines a periodic 
boundary box by arranging water with the thickness specified with "solvent_buffer", from the 
maximum and minimum coordinates of the protein in X, Y, and Z directions. 
The "align_axis diagonal" aligns the longitudinal direction of the protein's principal axis of inertia to 
the box diagonal line. (This operation allows decreasing the size of the periodic boundary box). 

 solvent buffer 15 
Specifies the solvent thickness of 15Å from the protein placed at the center of the periodic boundary 
box to each box face. 

 ion_placement random 
Places ions randomly in the simulation system. 

 ion SOD CLA 
Specifies chlorine ions (CLA) and sodium ions (SOD) for anions and cations, respectively. Any other 
ions in the CHARMM file can also be specified. (Refer to the top file, etc.) Note that only monovalent 
ions can be used for anions and cations. Be sure to place ions with the minimum amount necessary to 
neutralize the total charge of the system. 

 ion_density 150 
In order to neutralize the system total charge, chlorine ions (CLA) and sodium ions (SOD) are placed 
randomly as anions and cations.In this setting (ion_density 150), the molx generates and places ions so 
that the ion concentration becomes 150mM, similar to the physiological salt concentration. 

 
When executing the molx with the input file above, the output is as follows:  
 

> molx.0.5.11b molx.in 
**************************************** 
  Molx (Version 0.5.11b) 
  Host: bits1 
  Date: Wed Aug 29 18:28:01 2012 
  Control File: molx.in 
**************************************** 
 
CHARMM TOP FILE: toppar/top_all27_prot_na.rtf 
 Version 31.1 
 Number of types of atomic mass : 163 
 Number of residues : 37 
 Number of residues for patching : 31 
 
CHARMM PAR FILE: toppar/par_all27_prot_na.prm 
 Number of bond types: 257 
 Number of angle types: 656 
 Number of dihedral types: 1127 
 Number of improper dihedral types: 70 
 Number of cmap dihedral types: 6 
 Number of nonbonded atom types: 163 
 Number of modified nonbonded atom pairs: 0 
 
CHARMM TOP FILE: + toppar/stream/toppar_all27_na_nad_ppi.str 
 Version 31.1 
 Number of types of atomic mass : 163 
 Number of residues : 48 
 Number of residues for patching : 32 
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CHARMM PAR FILE: + toppar/stream/toppar_all27_na_nad_ppi.str 
 Number of bond types: 257 
 Number of angle types: 656 
 Number of dihedral types: 1127 
 Number of improper dihedral types: 70 
 Number of cmap dihedral types: 6 
 Number of nonbonded atom types: 163 
 Number of modified nonbonded atom pairs: 0 
 
CHARMM TOP FILE: + toppar_all27_na_po4.str 
Version 31.1 
 Number of types of atomic mass : 163 
 Number of residues : 49 
 Number of residues for patching : 32 
 
CHARMM PAR FILE: + toppar_all27_na_po4.str 
 Number of bond types: 257 
 Number of angle types: 656 
 Number of dihedral types: 1127 
 Number of improper dihedral types: 70 
 Number of cmap dihedral types: 6 
 Number of nonbonded atom types: 163 
 Number of modified nonbonded atom pairs: 0 
 
PDB FILE: 2JDI_BFsub.pdb 
 Number of atoms : 7252 
 Number of hetero atoms : 64 
 Number of residues : 958 
 
Renaming residue 42B HIS -> HSD 
Renaming residue 263B HIS -> HSD 
Renaming residue 302B HIS -> HSE 
Renaming residue 471B HIS -> HSD 
Renaming residue 476B HIS -> HSD 
Renaming residue 52F HIS -> HSE 
Renaming residue 117F HIS -> HSE 
Renaming residue 177F HIS -> HSE 
Renaming residue 198F HIS -> HSD 
Renaming residue 328F HIS -> HSD 
Renaming residue 367F HIS -> HSE 
Renaming residue 427F HIS -> HSD 
Renaming residue 451F HIS -> HSE 
Warning: CMAP term not assigned: -C N CA C N CA C +N in residue 23B 
Warning: CMAP term not assigned: -C N CA C N CA C +N in residue 510B 
Warning: CMAP term not assigned: -C N CA C N CA C +N in residue 9F 
Warning: CMAP term not assigned: -C N CA C N CA C +N in residue 474F 
Patching NTER to VAL(23B) 
Patching NTER to THR(9F) 
Patching CTER to ALA(510B) 
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Patching CTER to ALA(474F) 
Warning: Atom OT2 in residue ALA ( 510B) is missing in pdb file. 
Warning: Atom OT2 in residue ALA ( 474F) is missing in pdb file. 
7443 atoms are missing in pdb file. 
 
All Coordinates are determined. 
 
0 waters are found in input pdb file. 
0 cations are found in input pdb file. 
0 anions are found in input pdb file. 
Align principal axes of molecules. 
Setup of Solvation. 
Minimum and maximum coordinates of solute: 
  (-47.15,-42.56,-30.51)-(49.19,38.09,34.75) 
solvent_buffer 14.00 Angstrom 
All atoms are shifted: (61.15,56.56,44.51) 
Simulation box is configured as (124.34,108.65,93.26) 
Solvent PDB file: 
PDB FILE: watbox216.pdb 
 Number of atoms : 648 
 Number of hetero atoms : 0 
 Number of residues : 216 
Box Size of Input Solvent PDB: (18.77,18.77,18.77) 
Duplicated: (7,6,5) 
solvent_radius 1.40 Angstrom 
solvent_exclusion_layer 0.00 Angstrom 
ION: Grid Spacing (0.99,1.00,0.99) 
ION: Number of Grid (125,109,94) 
ION: placement random 
ION: ion_cutoff 9.40 Angstrom 
ION: solvent_radius 1.40 Angstrom 
ION: ion_exclusion_layer 6.00 Angstrom 
ION: ion2_exclusion_layer 2.00 Angstrom 
ION: Starting to Charge Grid Done 
ION: total charge is -18 
ION: 35740 waters are solvated. 
ION: 0 ions are in input pdb file 
ION: Number of ions is estimated to be 194. 
ION: 194 ions are added. 
ION: SOD 106, CLA 88 
ION: cation SOD (10.09,10.13,9.55) by random 
ION: cation SOD (4.89,6.16,11.47) by random 
ION: cation SOD (26.59,9.98,5.39) by random 
……………………………………………………… 
Omitted 
……………………………………………………… 
ION: cation SOD (22.49,19.10,43.41) by random 
ION: anion CLA (8.46,20.02,59.78) by random 
ION: cation SOD (25.23,35.22,9.99) by random 
ION: anion CLA (117.29,29.15,19.92) by random 
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ION: SOD 106, CLA 88 
PDB FILE: configured_solvent 
 Number of atoms : 106638 
 Number of hetero atoms : 0 
 Number of residues : 35546 
 
0 atoms are missing in pdb file. 
 
Molecular Data (mdat) Information: 
 Number of atoms: 121591 
 Number of atom types: 56 
 Number of residues: 36698 
 Number of molecules: 35746 
 Number of bonds: 121507 
 Number of bond types: 90 
 Number of angles: 62545 
 Number of angle types: 196 
 Number of dihedrals: 39318 (term: 41017) 
 Number of dihedral types: 295 
 Number of impropers: 2427 
 Number of improper types: 18 
 Number of cmap terms: 950 
 Number of cmap types: 6 
 Number of solute molecules: 6 
 Total charge: -0.000000 
 Periodic Boundary Box: 
  124.34  0.00  0.00 
   0.00 108.65  0.00 
   0.00  0.00  93.26 

 
 

3.3. MARBLE 
 

3.3.1. Energy minimization (with example of lysozyme) 
This section describes how to minimize the system energy using MARBLE. The purpose of the energy 

minimization is to optimize the structures of the missing hydrogen atoms generated in the molx and those of 
surrounding solvent molecules. The following shows the example of the input file for an energy minimization 
calculation with 1500 steps in the steepest descent method. During the calculation, all atoms except lysozyme 
hydrogen are restrained to the positions defined in the 193L_w.crd. 

 
> more min.in 
[input] 
 mdat_file = ../molx/193L_w.mdat 
 crd_file = ../molx/193L_w.crd 
 
[nonbond] 
 cutoff = 10.0 
 
[ewald] 
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 d_grid = 1.1 
 
[restraint] 
 method = position_harmonic 
 crd_file = ../molx/193L_w.crd 
 group = atom non_hydrogen 1A 129A 
 k = 1.0 #kcal/mol/ang2 
 
[min] 
 step = 1500 
 
[output] 
 crd_file = 193L_w-min.crd 
 pdb_file = 193L_w-min.pdb 

 
For the MARBLE input files, specify the parameters under each section indicated with "[ ]". The settings 

for the energy minimization calculation are as follows:  
 

[input] 
This section sets the following files as input files:  
 mdat_file = ../molx/193L_w.mdat 

Specifies 193L_w.mdat as the mdata file. 
 crd_file = ../molx/193L_w.crd 

Specifies 193L_w.mdat as the crd file. 
 

[nonbond] 
This section sets the parameter of non-bonded interactions. 
 cutoff = 10.0 

Specifies the cutoff of short-range interactions to 10Å. 
 

[ewald] 
This section sets the parameter for the PME (Particle Mesh Ewald) for calculating non-bonded long-range 

interactions. 
 d_grid = 1.1 

Defines the upper limit of the grid intervals on the periodic boundary box. Set this value to 
approximately 1.1. 

 
[restraint] 

 This section sets a restraint to the position of a specific atomic group in the 193L_w.crd using the 
position harmonic method. Here, we set the restraint with the restraint force constant of 1 (kcal•mol-1Å-2). The 
command settings are as follows:  

 method = position_harmonic 
Specifies the restraining method to "position harmonic". This method restrains the target atom by 
connecting the specified coordinate and the current coordinate with a spring. 

 crd_file = ../molx/193L_w.crd 
Specifies the crd file containing the coordinates for restraints. This example specifies the 193L_w.crd 
file. 

 group = atom non_hydrogen 1A 129A 
The "group" command defines atoms contained in a group. 
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This example specifies heavy atoms (non-hydrogen atoms) in the residues "1 to 129" in the molecule of 
which chain ID is "A". 

 k = 1.0 
Specifies the spring constant for restraints. This example specifies 1.0 (kcal•mol-1Å-2). 

 
[min] 

This section specifies the energy minimization parameter. 
 step = 1500 

Specifies to perform an energy minimization calculation in 1500 steps (with the steepest descent 
method).  

 
[output] 

This section specifies output files. 
 crd_file = 193L_w-min.crd 

Specifies 193_w-min.crd as the crd file. 
 pdb_file = 193L_w-min.pdb 

Specifies 193_w-min.pdb as the pdb file. 
 

3.3.2. Molecular dynamics calculation 
This section describes how to perform molecular dynamics calculation in MARBLE. The procedure will 

be explained along with the input files of the following calculations:  
 
(3.3.2.1) Molecular dynamics simulation of lysozyme aqueous solution system 
(3.3.2.2) Targeted MD of the transition from closed to open conformation of F1 motor 
 

3.3.2.1. Molecular dynamics simulation of lysozyme aqueous solution system 
This section explains the procedure to perform molecular dynamics simulation in MARBLE, using the 

coordinates of lysozyme aqueous solution after energy minimization is applied. The calculation is performed 
with the following processes:  

 
Equilibration (increasing the temperature to that for simulation) 
Removing restraints on the protein while maintaining the temperature 
Productive run 
 
The following example uses the input file for MARBLE to equilibrate the aqueous solution system of the 

lysozyme crystal structure 193L (created in the molx tutorial). 
 

3.3.2.1.1. Equilibration (increasing the temperature to that for simulation) 
First, gradually increase the system temperature to the simulation temperature (300K in this example). 

The input file for this simulation is as follows. During the calculation, all atoms except lysozyme hydrogen are 
restrained to the positions defined in the 193L_w.crd. 

 
> more eq00.in 
[input] 
 mdat_file = ../molx/193L_w.mdat 
 crd_file = ../minimize/193L_w-min.crd 
 
[init] 
 temperature = 10 
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[nonbond] 
 cutoff = 10.0 
 
[ewald] 
 d_grid = 1.1 
 
[PT_control] 
 ensemble = NVT 
 method = rescaling 
 temperature = 10 
 gradual_change_T = 20000 300.0 
 
[constraint] 
 rigid_body = hydrogen 
 
[restraint] 
 method = position_harmonic 
 crd_file = ../molx/193L_w.crd 
 group = atom non_hydrogen 1A 129A 
 k = 1.0 
 
[md] 
 time_step = 2.0 
 step = 50000 
 trj_file = 193L_w-eq00.trj 
 trj_step = 500 
 print_step = 100 
 prop_file = 193L_w-eq00.prop 
 prop_step = 50 
 
[output] 
 crd_file = 193L_w-eq00.crd 
 pdb_file = 193L_w-eq00.pdb 

 
For the MARBLE input files, specify the parameters under each section indicated with "[ ]". The 

specified contents are as follows. (For the items explained in the previous chapters, see the previous 
descriptions.) 

 
[init] 
 temperature = 10 

Specifies the system initial velocity to 10(K). 
 

[PT-control] 
 ensemble = NVT 

Specifies the system ensemble to NVT. 
 method = rescaling 

Specifies the temperature control method to "rescaling". 
 temperature = 10 

Specifies the initial temperature to 10(K). 
 gradual_change_T = 20000 300.0 
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Increases temperature from the initial value 10(K) to 300(K) in 20,000 steps. 
 

[constraint] 
 rigid_body = hydrogen 

Specifies a group of atoms covalently bonded with hydrogen as rigid-body atoms. 
 

[md] 
This section sets the molecular dynamics simulation parameters. 
 time_step = 2.0 

Specifies the simulation time step to 2.0 (fs). 
 step = 50000 

Specifies the total simulation steps to 50,000 steps (100(ps)). 
 trj_file = 193L_w-eq00.trj 

Specifies the trj file where the trajectories are output to "193L_w-eq00.trj". 
(trj files output all atomic coordinates in the system and periodic boundary box data.) 

 trj_step = 500 
Specifies the output interval of trj files to 500 steps. 

 print_step = 100 
Outputs energy, etc., in out files every 100 steps. 

 prop_file = 193L_w-eq00.prop 
Specifies the prop file outputting energy, etc., to "193L_w-eq00.prop". 

 prop_step = 50 
Outputs data in prop files every 50 steps. 

 
3.3.2.1.2. Equilibration (removing restraints gradually) 

This section describes the second half of the simulation of equilibrating the aqueous solution system of 
the lysozyme crystal structure 193L (used in the molx chapter). In this procedure, the restraints applied to 
non-hydrogen atoms in lysozyme are gradually removed. The following shows the input file:  

 
> more eq01.in 
[input] 
 mdat_file = ../molx/193L_w.mdat 
 crd_file = 193L_w-min-eq00.crd 
 restart = on 
 
[nonbond] 
 cutoff = 10.0 
 
[ewald] 
 d_grid = 1.1 
 
[PT_control] 
 ensemble = NVT 
 method = rescaling 
 temperature = 300 
 
[constraint] 
 rigid_body = hydrogen 
 
[restraint] 
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 method = position_harmonic 
 crd_file = ../molx/193L_w.crd 
 group = atom non_hydrogen 1A 129A 
 k = 1.0 
 gradual_change_k = 50000 0 
 
[md] 
 time_step = 2.0 
 step = 50000 
 print_step = 100 
 trj_file = 193L_w-eq01.trj 
 trj_step = 500 
 prop_file = 193L_w-eq01.prop 
 prop_step = 50 
 
[output] 
 crd_file = 193L_w-eq01.crd 
 pdb_file = 193L_w-eq01.pdb 

 
For the MARBLE input files, specify the parameters under each section indicated with "[ ]". The 

specified contents are as follows. (For the items explained in the previous chapters, see the previous 
descriptions.) 

 
[input] 
 restart = on 

Performs calculation using the velocity and ensemble data in the crd file specified as an input 
(193L_w-eq00.crd in this example). 

 
[PT_control] 
 temperature = 300 

Carries out the simulation at temperature of 300 K. Note that since the initial velocity from the last 
calculation is continuously applied, the value is not specified in the [init] section. 

 
[restraint] 

This section sets a restraint to the position of a specific atomic group in the 193L_w.crd using the position 
harmonic method. Here, we set the restraint with the restraint force constant of 1 (kcal•mol-1Å-2), and the force 
constant is gradually changed to 0. The command settings are as follows:  

 gradual_change_k = 50000 0 
Changes the force constant used for restraints from 1 to 0 (kcal•mol-1Å-2) in 50,000 steps. 
 

3.3.2.1.3. Production run (NVT ensemble)  
The following input file performs a 1 (ns) calculation of the water system of lysozyme (193L) as the 

productive run:  
 

> more run01.in 
[input] 
 mdat_file = ../molx/193L_w.mdat 
 crd_file = ../equil/193L_w-eq01.crd 
 restart = on 
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[nonbond] 
 cutoff = 10.0 
 
[ewald] 
 d_grid = 1.1 
 
[PT_control] 
 ensemble = NVT 
 temperature = 300 
 method = extended_system 
 initialize = on 
 
[constraint] 
 rigid_body = hydrogen 
 
[md] 
 time_step = 2.0 
 step = 5000000 
 print_step = 100 
 trj_file = 193L_w-run01.trj 
 trj_step = 500 
 prop_file = 193L_w-run01.prop 
 prop_step = 50 
 
[output] 
 crd_file = 193L_w-run01.crd 
 pdb_file = 193L_w-run01.pdb 

 
For the MARBLE input files, specify the parameters under each section indicated with "[ ]". The 

specified contents are as follows. (For the items explained in the previous chapters, see the previous 
descriptions.) 

 
[PT_control] 
 method = extended_system 

Controls the temperature in the nose-hoover method. If "method" is not specified, the 
extended_system is set. 

 initialize = on 
Initializes the parameters. This setting will be canceled in later calculations to continuously apply the 
crd file parameters. 

 
3.3.2.1.4. Production run (NPT ensemble)  

The following input file performs a 1 (ns) calculation of the water system of lysozyme (193L) as the 
productive run. In this example, the ensemble was changed from NVT to NPT. 

 
> more run01.in 
[input] 
 mdat_file = ../molx/193L_w.mdat 
 crd_file = ../equil/193L_w-eq01.crd 
 restart = on 
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[nonbond] 
 cutoff = 10.0 
 
[ewald] 
 d_grid = 1.1 
 
[PT_control] 
 ensemble = NPT 
 temperature = 300 
 method = extended_system 
 initialize = on 
 
[constraint] 
 rigid_body = hydrogen 
 
[md] 
 time_step = 2.0 
 step = 5000000 
 print_step = 100 
 trj_file = 193L_w-run01.trj 
 trj_step = 500 
 prop_file = 193L_w-run01.prop 
 prop_step = 50 
 
[output] 
 crd_file = 193L_w-run01.crd 
 pdb_file = 193L_w-run01.pdb 

 
For the MARBLE input files, specify the parameters under each section indicated with "[ ]". For details 

on the input file contents, see the chapters with the descriptions. 
 

[PT-control] 
 ensemble = NPT 

Specifies the system ensemble to NPT. 
 method = extended_system 

Controls the temperature in the nose-hoover method. If "method" is not specified, the 
extended_system is set as the default method. 

 initialize = on 
Initializes the parameters for NPT. This setting will be canceled in later calculations to inherit the NPT 
ensemble data in the input crd file. 

 
3.3.2.2. Targeted MD of the transition from closed to open conformation of F1 motor 

Targeted MD reproduces conformation change of proteins much faster than the actual time scale by 
applying force to the proteins atoms to promote the change. The following shows the input file of the productive 
run applying the force to theβ-subunit atoms of F1 motor.  

 
Productive run 

The productive run of the Targeted MD is performed using the coordinate of the system after the 
equilibration is complete. This example calculates the transition from closed to open conformation of the 
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β-subunit (total 5ns), with the following input file:  
 

>cat run.in 
[input] 
 mdat_file = ../molx/2JDI_BFsub_molx.mdat 
 crd_file = ../eq2/2JDI_BFsub_eq02.crd 
 restart = on 
 
[nonbond] 
 cutoff = 10.0 
 
[ewald] 
 d_grid = 1.1 
 
[constraint] 
 rigid_body = hydrogen 
 
[PT_control] 
 ensemble = NVT 
 temperature = 300 
 
[init] 
 solute_molecule = 4 
 
[md] 
 time_step = 2.0 
 step = 250000 
 remove_momentum = solute_rot 
 print_step = 500 
 trj_file = 2JDI_BFsub_rmsd01_001.trj 
 trj_step = 500 
 prop_file = 2JDI_BFsub_rmsd01_001.prop 
 prop_step = 5000 
 
[output] 
 crd_file = 2JDI_BFsub_rmsd01_001.crd 
 pdb_file = 2JDI_BFsub_rmsd01_001.pdb 
 
[restraint] 
 method = rmsd 
 k = 7300.0 
 pdb_file = 2JDI_AEsub.pdb 
 group = atom non_hydrogen 24B 601B 
 group = atom non_hydrogen 9F 474F 
 pdb_group = atom non_hydrogen 24B 601B 
 pdb_group = atom non_hydrogen 9F 474F 
 best_fit = on 
 rmsd = 5.62243 
 gradual_change_rmsd = 2500000 0.0 
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For the MARBLE input files, specify the parameters under each section indicated with "[ ]". The 
specified contents are as follows. (For the items explained in the previous chapters, see the previous 
descriptions.) 

 
[init] 
 solute_molecule = 4 

In this simulation, the rotation of solvent molecules is stopped by specifying "remove_momentum = 
solute_rot" in the [md] section. The "solute_molecule" command here specifies the number of the 
solvent molecules of which rotation is to be stopped. This example specifies the number to 4 (i.e. F1 α-, 
β-subunits, ATP, and Mg). 

 
[restraint] 

When performing Targeted MD in MARBLE, the force to apply to each atom is given as a restraining 
force to maintain a RMSD value between the target and current structures. The restraint RMSD value is then 
gradually changed to approach to the target structure (i.e. the value approaches zero). 

 method = rmsd 
Specifies the restraint method to the one with RMSD value between the current and target structures. 

 k = 7300.0 
In the method of restraint with RMSD values, atoms are restrained with the springs which vary 
according to the RMSD values of the atoms between the current and target structures. This command 
specifies the total value of the spring constant used in the system. This calculation example restrains 
heavy atoms in B-chain residues 24 to 601 and those in F-chain residues 9 to 474, and the total count of 
the restrained atoms is approximately 7300. Since this system example assumes the spring constant of 
1(kcal•mol-1Å-2) per atom, the K value should be 7300. 

 pdb_file = 2JDI_AEsub.pdb 
Specifies the target structure. Since this example simulates the transition of the closed to open 
conformation of the F1 motor β subunit, the 2JDI_AEsub.pdb (open conformation) is set to the target 
structure. 

 group = atom non_hydrogen 24B 601B 
group = atom non_hydrogen 9F 474F  
Specifies the atoms to be restrained with RMSD values. (Specify atoms in "2JDI_BFsub_eq02.crd" 
specified in the input file.) 

 pdb_group = atom non_hydrogen 24B 601B 
pdb_group = atom non_hydrogen 9F 474F  
Specifies the atoms used for calculating RMSD values at target structure (i.e. 2JDI_AEsub.pdb in this 
example). 

 best_fit = on 
Modifies the overlap of the current and target structures with "best fit" during RMSD value 
calculations. (This operation is for RMSD calculations and does not affect the current structure.) 

 rmsd = 5.62243 
Specifies the restraining RMSD value. (Here, "5.62243Å", the RMSD value between the closed 
conformation and the target open conformation is specified.) 

 gradual_change_rmsd = 2500000 0.0 
Specifies the restraining RMSD value to overlap the target structure (i.e. RMSD=0) in 2,500,000 steps. 

 
prop file 

When executing the Target MD with the input file above, the content of the output prop file is as follows:  
 

#1 TIME  2 TEMPERATURE  3 TOTAL_ENE  4 POTENTIAL  5 RMSD_ENE  6 RMSD  7 TARGET_RMSD 

2.100000e+02  3.013549e+02  -3.196633e+05  -3.941214e+05  9.339044e-03  5.610054e+00  5.611185e+00 
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2.200000e+02  3.004271e+02  -3.196564e+05  -3.936027e+05  2.758408e-02  5.601884e+00  5.599940e+00 

2.300000e+02  2.992376e+02  -3.196625e+05  -3.940014e+05  1.615850e-01  5.583991e+00  5.588695e+00 

2.400000e+02  2.998921e+02  -3.196609e+05  -3.934682e+05  3.922606e-03  5.576718e+00  5.577451e+00 

2.500000e+02  3.001248e+02  -3.196620e+05  -3.936488e+05  7.254864e-01  5.556237e+00  5.566206e+00 

2.600000e+02  3.005848e+02  -3.196579e+05  -3.933531e+05  5.966773e-01  5.564002e+00  5.554961e+00 

2.700000e+02  2.998154e+02  -3.196666e+05  -3.942913e+05  3.877468e-04  5.543486e+00  5.543716e+00 

2.800000e+02  3.011331e+02  -3.196645e+05  -3.937764e+05  3.908584e-02  5.530157e+00  5.532471e+00 

2.900000e+02  2.993740e+02  -3.196623e+05  -3.938691e+05  4.938038e-01  5.513002e+00  5.521226e+00 

3.000000e+02  2.997662e+02  -3.196665e+05  -3.941785e+05  4.499579e-01  5.502130e+00  5.509981e+00 

------------- 

Omitted 

------------- 

5.140000e+03  3.020446e+02  -3.163080e+05  -3.928481e+05  1.319831e+03  4.926735e-01  6.746916e-02 

5.150000e+03  2.994278e+02  -3.162387e+05  -3.930239e+05  1.319981e+03  4.814528e-01  5.622430e-02 

5.160000e+03  3.012046e+02  -3.161688e+05  -3.924416e+05  1.368356e+03  4.779299e-01  4.497944e-02 

5.170000e+03  3.007494e+02  -3.160989e+05  -3.927360e+05  1.435828e+03  4.772306e-01  3.373458e-02 

5.180000e+03  2.995500e+02  -3.160180e+05  -3.922802e+05  1.462634e+03  4.701066e-01  2.248972e-02 

5.190000e+03  2.998215e+02  -3.159517e+05  -3.928270e+05  1.523464e+03  4.680749e-01  1.124486e-02 

5.200000e+03  3.000127e+02  -3.158740e+05  -3.925378e+05  1.564234e+03  4.629024e-01  0.000000e+00 
 
The numbers in the columns from the left indicates calculation time, temperature, total energy, potential 

energy, restraining energy, current RMSD value, and target RMSD value. The table above shows that the 
RMSD values in the sixth column approach from the initial value 5.62243 to the target value 0.0. (For the initial 
and target values, see the previous [restraint] section for input files.) 
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4. Execution Procedure for the molx and MARBLE (for K computer and 

FX10) 
 
For K computer and FX10, the molx and MARBLE are generated as execution files for computing nodes. 

This chapter describes how to execute the molx and MARBLE on computing nodes, using the FX10 as an 
example. 

 
 

4.1. Execution procedure for the molx 
The molx must be executed on computing nodes since it cannot execute on the login node. 
Execute the molx in the batch mode, or first login to the computing node in the interactive mode and then 

execute the program.  
 
 

4.2. Execution procedure for MARBLE 
This section describes how to perform parallel computation by specifying the necessary data, such as the 

number of cell divisions, number of processes, three-dimensional specification of the processes, and grids for 
PME method, using the two specification methods described in "3.1.5 Parallel computation in MARBLE". 

 
Performing MARBLE calculations requires the following data as explained in "3.1.5 Parallel computation 

in MARBLE":  
 
(a) The number of cell divisions in the system in X, Y, and Z directions 
(b) The number of processes used 
(c) The number of processes arranged in X, Y, and Z directions 
(d) The number of grids made by dividing the space at even intervals in X, Y, and Z directions to calculate 

electrostatic interactions with PME (Particle Mesh Ewald) method 
 
Further, the items (a) to (d) must be determined so that they satisfy the specific rules as described below:  
 
The number of the processes to be used is the product of the numbers of the processes arranged in X, Y, 

and Z directions. 
 
To determine the number of cell divisions, satisfy the following items:  
 (A)The minimum cell width must be (cutoff + 4.5)/2, where "cutoff" is specified in [nonbond]. For 

example, when the cutoff is 9, the width is 6.75. When the cutoff is 10, the width is 7.25. Determine the 
number of cell divisions based on the width larger than the minimum width for X, Y, and Z directions. 

 (B)The number of cell divisions in each direction must be divisible by the number of the processes 
arranged for that direction. 

To determine the number of grids for PME in XYZ directions, satisfy the following items:  
 (C)The grid intervals must be approximately 1.1Å or smaller. 
 (D)The number of grids in each direction must be divisible by the number of the processes arranged for 

that direction. 
 
MARBLE provides the following two methods to specify the data (a) to (d). The sections below describe 

the calculation procedure with each method:  
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4.2.1. Using d_grid 

In this method, the user can easily specify all data necessary for parallel computation by only specifying 
the number of processes for computation. 

 
First, describe the shell script file (batch.sh) for executing a batch job, as follows:  
 

#!/bin/sh 
#PJM -L "rscgrp=debug" 
#PJM -L "node=4x2x2" 
#PJM - -mpi “proc=64” 
#PJM -L "elapse=30:00" 
#PJM –j 
 
export OMP_NUM_THREADS=4 
mpiexec /home/xxxx/marble-0.6/bin/marble.0.6.0_FX10 run01.in run01.out 

 
The shell script file above performs hybrid parallel computation with the following parameters:  
 

The number of nodes: 4x2x2 (#PJM –L “node=4x2x2”) 
The number of processes: 64 (#PJM - -mpi “proc=64”) 
The number of threads: 4 (export OMP_NUM_THREADS=4) 

 
In this example, four processes are submitted to each node. The four processes are then further divided in 

the way that the numbers of the processes in x, y, and z directions are equal. 
 
Next, as explained in chapter 3, describe as follows in the [ewald] section in the input file for MARBLE 

execution (run01.in):  
 

[ewald] 
d_grid = 1.1 

 
Then, based on the system box size and d_grid value, the program determines the number of grids for 

PME in each direction, and according to the specified number of processes, automatically calculates the number 
of the cells and processes in each direction, and performs computation. 

In this method, however, since MARBLE uses the d_grid and box size data for computation, the grid size 
for PME may change during the computation in case that the size of the box is changed, as in NPT ensemble. 

 
4.2.2. Specifying the data directly 

Another method is to specify the data (a) to (d) directly in input files so that the items (A) to (D) above 
are satisfied.  

 
First, describe the shell script file (batch.sh) for executing a batch job, as follows:  
 

#!/bin/sh 
 
#PJM -L "rscgrp=debug" 
#PJM -L "node=2x2x4" 
#PJM --mpi "proc=64" 
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#PJM -L "elapse=30:00" 
#PJM -j 
export MBL_PE_NODE=2x2x1 
export OMP_NUM_THREADS=4 
mpiexec /home/c74000/marble-0.6/bin/marble.0.6.0_FX10 run01a.in run01a.out 

 
The shell script file above performs hybrid parallel computation with the following parameters:  
 

The number of nodes: 16 (#PJM –L “node=2x2x4”) 
The number of processes: 64 (#PJM - -mpi “proc=64”) 
The number of threads: 4 (export OMP_NUM_THREADS=4) 

 
Here, the number of processes for a node is four. If no particular setting is made, the four processes are 

further divided in the way that the numbers of processes in x, y, and z directions are equal. 
 
However, if the user wishes to specify the division method manually, the user can specify as follows in 

the shell script above:  
 

export MBL_PE_NODE=2x2x1 
 
Then the three-dimensional division of the processes on each node is set to 2x2x1. With this, the 

three-dimensional division of the processes for nodes and that of the processes within the node are set to 2x2x4 
and 2x2x1, respectively. The three-dimensional division for the entire computation process thus becomes 
4x4x4. 

 
Further, the following shows a part of the description of the input file (run01a.in) for MARBLE 

execution. 
 

---------------------- 
[nonbond] 
 cutoff = 10.0 
 n_cell = 8 8 8 
 n_pe = 4 4 4 
 
[ewald] 
 method=PME 
 grid=72 72 72 
---------------------- 

 
Here, the section [nonbond] specifies "cutoff = 10.0". 
(This means the minimum cell width is 6.75 from the formula mentioned above.) 
 
Note here that the size of lysozyme box is 72.66Å on each side (see the output of the molx execution in 

3.2.2). We therefore set the number of divisions for cells, processes, and PME grids in X,Y, and Z directions to 
8x8x8, 4x4x4, and 72x72x72, respectively. 
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5. Command Reference 
This chapter describes the commands used for the molx and MARBLE. Each command is indicated in 

bold type in the descriptions. 
 

5.1. The molx 
Usage (see 3.1.1) 

molx input file 
Example  

molx molx.in 
 

For the content of input files for actual calculation, see "3.2 Constructing the system with the molx". 
 

5.1.1. Force field 
These commands specify the files for using the CHARMM force field (i.e. top files, par files, and toppar 

files). 
 
charmm_top_file 
Specifies the CHARMM top file (default value: none). A maximum of five top files can be specified. 

Usage: charmm_top_file file name 
Example: charmm_top_file top_all27_prot_na.rtf 

 
charmm_par_file 
Specifies the CHARMM par file (default value: none). A maximum of five top files can be specified.  

Usage: charmm_par_file file name 
Example: charmm_par_file par_all27_prot_na.rtf 

 
charmm_toppar_file 
Specifies the CHARMM par file (default value: none). A maximum of five toppar files can be specified. 

Usage: charmm_toppar_file file name 
Example: charmm_toppar_file toppar_all22_prot_pyridines.str 

 
5.1.2. Input 

This command specifies the structural information of target molecules as an input. Basically, a pdb file is 
used for the specification. The user can also specify protein primary structures (i.e. amino acid sequences) to 
perform linear peptide calculation. 

 
input_pdb_file 
Specifies a pdb file of proteins, etc. used for calculation (default value: none). 

Usage: input_pdb_file file name 
Example: input_pdb_file 6lYZ.pdb 

 
5.1.3. Output 

These commands output the files necessary for MARBLE simulations, such as crd and mdat files of the 
system constructed in the molx and pdb file of the constructed system. 

 
output_mdat_file 
Specifies an mdat file for the system constructed in the molx (default value: none). 

Usage: output_mdat_file file name 
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Example: output_mdat_file 6lyz_w.mdat 
 
output_crd_file 
Specifies a crd file for the system constructed in the molx (default value: none). 

Usage: output_crd_file file name 
Example: output_crd_file 6lyz_w.crd 

 
output_pdb_file 
Specifies a pdb file of the entire system constructed in the molx (default value: none). 

Usage: output_pdb_file file name 
Example: output_pdb_file 6lyz_w.pdb 

 
5.1.4. Model building  

These commands set up the calculation target molecule. 
 
renumber_residue 
Renumbers residue numbers (default number: ). 

Usage:  renumber_residue {on|off} 
Example:  renumber_residue on 

 
rename_residue 
Changes the name of a specific residue described in input files (default value: none?) 

Usage: rename_residue residue number＋chain_ID new residue name 
Example: rename_residue 15A HSE 

 
bond_length_limit 
Specifies the upper limit of interatomic bond length in input files (default value:  ??). 

Usage: bond_length_limit upper limit of bond length 
Example: bond_length_limit 5 

 
patch_ter 
Modifies the data of N- and C-terminuses of proteins in input files using the patch defining several 

terminuses in the CHARMM force field. 
Usage: patch patch name residue number (+chain_ID) 
Example: patch_ter NTER 23B 

 
patch 
Modifies the protein data in input files using several patches defined in the CHARMM force field. 

Usage: patch patch name residue number 1 (+chain_ID) …… 
Example: patch DISU 64A 80A 

 
Note:  
The syntax of the patch command, such as the number of residues to specify, varies depending on the 

patch type. For details, refer to the patch information of the CHARMM force field. 
 
alias 
Changes the name of atoms or residues in input files. 
(Not as in "rename_residue", this command is applied to all atoms or residues found in the relevant 

input file.) 
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Usage: alias old name new name 
Example: alias CD CD1 

 
5.1.5. System building 

These commands set up the solvent environment where the target molecule is placed. In this section, the 
settings are made in order of "Creating a box", "Adding water", and "Adding ions". 

 
Creating a box 

MARBLE performs calculation in solvent environment using periodic boundary conditions. Therefore it 
is first necessary to define a box on which to specify the periodic boundaries. 

 
box 
Used to manually define a box. Use this command when the size of the box is already determined. 

(default value: none. However, α, β, and γ are set to 90º if not specified.) 
Usage: box x y z α β γ 
Example: box 169.10 169.10 170.27 

 
align_axis 
Aligns the molecule axis with the specified direction to the box. For alignment directions, three options of 

"on", "z", and "diagonal" are available (default value: none). See below for the options:  
 
"on": Aligns the molecule's longest principal axis of inertia with x axis. 
"z": Aligns the molecule's longest principal axis of inertia with z axis. 
"diagonal": Places the molecule so that its longest principal axis of inertia is aligned with the box 

diagonal line. 
Usage: align_axis  {normal|z|diagonal} 
Example: align_axis diagonal 

 
solvent_cube 
Specicfies the box shape as a cube. If this is "on", the program defines a cube by determining the side of 

the cube according to the distance from the solvent surface defined in "solvent_buffer" (default vavlue: none). 
Usage: solvent_cube on 
Example: solvent_cube on 

 
 

Adding water 
After the box is defined, generate water molecules (solvent) used for the calculation in the box. 
 
solvent_pdb_file 
Specifies the pdb file of the solvent molecules to be placed in the box. Use wat216.pdb in usual cases 

(default value: none). 
Usage: solvent_pdb_file file name 
Example: solvent_pdb_file wat216.pdb 

 
solvent_excluded_layer 
Defines the thickness of the surface layer of the solute molecule where the solvent is excluded (default 

value: 0Å). 
Usage: solvent_excluded_layer layer thickness (Å) 
Example: solvent_excluded_layer 2 
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solvent_buffer 
Specifies the minimum thickness of the layer from the solute to the box wall (default value: 10Å). 

Usage: solvent_buffer thickness of solvent molecule layer (Å) 
Example: solvent_buffer 15 

 
Adding ions 

After water is generated, generate ions so that the total system charge is neutralized. Generate ions by 
replacing water molecule coordinates. 

 
ion 
Specifies the type of ions added to the system (default value: none). 

Usage: ion cation name anion name 
Example: ion SOD CLA 

 
Note:  
The names of cation and anion used here must be those in the CHARMM force field. Be sure to describe 

the names of cation and anion accurately in the specified order. If the names or their order is inaccurate, the 
molx performs calculation on wrong ions and a significant error may occur in the total charge. Only monovalent 
ions can be used for anions and cations. 

 
ion_placement 
Specifies how to place ions to "random" or "energy". The former generates ions randomly and the latter 

generates ions in the positions where the energy is minimized (default: random). 
Usage: ion_placement  {random|energy} 
Example: ion_placement energy 

 
ion_cutoff 
Specifies the cutoff distance for ions. Specify this command when "ion_placement" is "energy" 

(default value: 10Å). 
Usage: ion_cutoff cutoff length (Å) 
Example: ion_cutoff 7 

 
ion_density 
Generates the ions specified with "ion" command so that the ion density becomes the specified value 

(default value: 0mM). 
Usage: ion_density ion density (mM) 
Example: ion_density 4 

 
 

5.2. MARBLE 
Usage (see 3.1.1) 

marble input file output file 
Example 

marble run.in run.out 
 
For the content of input files for actual calculation, see "3.2 Constructing the system with the molx". 
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5.2.1. [input] 
This section specifies the input files used for MARBLE calculations. 
 
mdat_file 
Loads the .mdat file data created in the molx. 

Usage: mdat_file = file name 
Example: mdat_file = ../molx/protein.mdat 

 
crd_file 
Loads the xyz coordinate data of each atom from .crd files. 

Usage: crd_file = file name 
Example: crd_file = run001.crd 

 
restart 
Use this command when performing a molecular simulation with separate input files and when inheriting 

the ensemble and velocity data in the previous calculation. To specify .crd file data toinherit, use the following 
keywords:  

 
on: Uses all data in .crd files (default value: none). 
V: Velocity 
B: Periodic boundary box data 
E: Energy 
 
In particular, when restarting calculation with a different ensemble, select the keywords V, B, and E above, 

and specify the desired ensemble with [PT_control] section described below. (This operation has the same 
result as that of specifying "initialize=on" in [PT_control].) 

Usage: restart = {on|V|B|E} 
Example: restart = VB 

 
5.2.2. [output] 

Specifies the output file used for MARBLE calculations. 
 
crd_file 
Outputs .crd files containing the calculated final structure. 

Usage: crd_file = file name 
Example: crd_file = run001.crd 

 
pdb_file 
Outputs .pdb files containing the calculated final structure. 

Usage: pdb_file = file name 
Example: pdb_file = run001.pdb 

 
5.2.3. [init] 

This section specifies the initial setting of calculation parameters. 
 
temperature 
Specifies the initial temperature of the system (default value: none). 

Usage: temperature = specified temperature 
Example: temperature = 300 
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Use this command to define the initial velocity of each atom at calculation start. It is unnecessary to set 
this command when continuing calculation with another input file, such as a .crd file for completed simulations.  

 
solute_molecule 
Specifies the number of solute molecules in the system (default value: none). 

Usage: solute_molecule = number of solute molecules 
Example: solute_molecule = 3 

 
5.2.4. [restraint] 

This section performs the various settings for restraining atoms. 
 
method 
Specifies a method to restrain atoms. The method can be specified with the following keywords:  
 
position_harmonic: Restrains the specified group of atoms to the specified coordinates with springs. 
 
rmsd: Restrains the specified group of atoms so that the RMSD (Root Mean Square Displacement) values 

between the atoms and specified coordinates are satisfied. 
 
The following describes the parameters of the restraining method specified in "method":  
 

5.2.4.1. position_harmonic 
When specifying "position_harmonic" in "method", specify the following commands:  
 
(1) Specifying coordinate files to be referred 
Specify the coordinate file used as a reference with the command below. The user can specify either a crd 

file or pdb file. Use the command crd_file or pdb_file according to the file type. 
 
crd_file 
Specifies a crd file to which to refer to select atoms to be restrained. 

Example: crd_file = test.crd 
 
pdb_file 
Specifies a pdb file to which to refer to select atoms to be restrained. 

Example: pdb_file = test.pdb 
 
(2) Specifying group of atoms to be restrained 
When using a crd file as a coordinate reference, use "group" command. When using a pdb file, use 

"group_pdb" command. 
 
group 
Specifies a group of atoms to be restrained in the crd structure loaded with a crd file. 

Usage: group = atom selected atom type  first residue  end residue 
Example: group = atom non_hydrogen 24B 601B 

 
pdb_group 
Specifies a group of atoms to be restrained in the pdb structure loaded with a pdb file. 

Usage: pdb_group = atom selected atom type  first residue  end residue 
Example: pdb_group = atom non_hydrogen 24B 601B 
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(3) Setting restraint parameters 
k 
Specifies the spring constant of a potential function applied to each atom to be restrained. 

Usage: k = spring constant (kcal/mol/ang^2) 
Example: k = 1.0 

 
gradual_change_k 
Gradually changes the spring constant specified with "k" command to the target value with specified 

number of steps. Use this command to gradually apply or remove restraint during simulations. 
Usage: gradual_change_k = number of steps  target spring constant 
Example: gradual_change_k = 50000 0 

 
5.2.4.2. rmsd 

When specifying "rmsd" in "method", set up the following commands:  
 
(1) Specifying coordinate files to be referred (see 5.2.4.1 position_harmonic) 
(2) Specifying group of atoms to be restrained (see 5.2.4.1 position_harmonic) 
(3) Specifying restraint parameters 
 
rmsd 
Applies restraint so that the rmsd value specified with this command is satisfied. 

Usage: rmsd = target rmsd value (Å) 
Example: rmsd = 3.5 

 
gradual_change_rmsd 
Gradually changes the value specified in "rmsd" to the target value with specified number of steps. (Use 

this command for Targeted MD. See 3.3.2.2.) 
Usage: gradual_change_rmsd = number of steps  target rmsd value 
Example: gradual_change_rmsd = 500000 0 

 
best_fit 
Fits the snap shot structure to the target coordinate when checking the restraint rmsd in each step of 

simulation. 
Usage: best_fit = on 

 
k 
Specifies the spring constant of a potential function applied to each atom to be restrained. 

Usage:  k = spring constant (kcal/mol/ang^2) 
Example:  k = 1.0 

 
5.2.5. [constraint]  

This section performs the settings to handle groups of atoms bonded with hydrogen (methyl groups, etc.,) 
as rigid-body. Using this option allows decreasing the simulation time step to approximately 2fs since hydrogen 
bond vibration can be neglected. 

 
rigid_body 
Specifies the target atom to be handled as rigid-body (default value: none). 

Example: rigid_body = hydrogen 
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5.2.6. [PT_control] 
This section specifies the system ensemble, as well as temperature and pressure control. 
 
ensemble 
Specifies the ensemble for the system calculation (default value: NVT). 

Usage: ensemble = {NVT|NPT|NVE} 
Example: ensemble = NPT 

 
initialize 
Changes the system ensemble (default value: none). 

Usage: initialize=on 
 
Note:  
Use this command to change ensemble (for example, from NVT to NPT) when restarting calculation and 

continuing the previous simulation. Note that if this command is used, the data obtained from the previous 
calculation in .crd files will be reset (except for coordinate sets). Use this command only when it is necessary to 
change the ensemble from the previous calculation.  

 
method 
Specifies how to control temperature and pressure (default value: extended_system). 

Usage: method = {extended_system|rescaling} 
Example: method = rescaling 

 
Note:  
The "rescaling" is available only for the NVT ensemble. 
 
temperature 
Specifies the system temperature (default: 298.15 (k)). 

Usage: temperature = set temperature (K) 
Example: temperature = 310 

 
pressure 
Specifies the system pressure (default: 1 (atm)) 

Usage: pressure = set pressure (atm) 
Example: pressure = 1.0 

 
gradual_change_T 
Changes the temperature to the target value with specified time steps (default value: the number of 

steps=0, target temperature=the "temperature" value). 
Usage: gradual_change_T = number of steps  target temperature (K) 
Example: gradual_change_T = 10000 300 (changing temp. to 300(k) in 10000 steps) 

 
5.2.7. [nonbond] 

This section specifies the settings necessary for calculating non-bonded interactions in the system. 
 
cutoff 
Specifies the cutoff radius for non-bonded interactions (default value: 9.0Å) 

Usage: cutoff = cutoff radius (Å) 
Example: cutoff = 10 

 

42 
 



5.Command Reference 

n_cell (unnecessary when d_grid is specified in the [ewald] section) 
Specifies how to define cells on the box during parallel computation. 

Usage: n_cell = (n_cell)x (n_cell)y (n_cell)z  
(n_cell)x,y,z: number of cells in each component (integer) 

Example: n_cell = 20 20 20 
 
Note:  
When specifying the cells, refer to the minimum cell width obtained by (cutoff + 4.5)/2. For example, 

when the cutoff=9(Å), the width is 6.75(Å). If the width of the box and the cutoff is 64Å and 9Å, respectively, 
the minimum cell width is 64/6.75=9.481. In this example, the number of the cells should be 9 or smaller. 

 
n_pe (unnecessary when d_grid is specified in the [ewald] section) 
Specifies how to divide the process for parallel computation into spatial divisions. 

Usage: n_pe = (n_pe)x (n_pe)y (n_pe)z 
(n_pe)x,y,z: number of cells in each component (integer) 

Example: n_pe = 10 10 10 
 
Note:  
The specified processes must satisfy the following rules:  
 
The values (n_cell)x, (n_cell)y, and (n_cell)z must be divisible by (n_pe)x, (n_pe)y, and (n_pe)z, 

respectively. 
 
The number of grids in x, y, and z components specified in [ewald] section must be divisible by (n_pe)x, 

(n_pe)y, and (n_pe)z, respectively. 
 
The number of total processes used for the calculation must be the product of the number of each 

component of x, y, and z, namely, (n_pe)x*(n_pe)y*(n_pe)z. 
 
 

5.2.8. [ewald] 
This section performs the settings on the PME method (Particle Mesh Ewald) to calculate long-range 

electrostatic interactions in the system. 
 
grid 
Specifies the number of grids on the system box in X, Y, and Z directions (default value: none). 

Usage: grid = (n_grid)x (n_grid)y (n_grid)z 
(n_grid)xyz: number of grids in XYZ directions of the box (integer) 

Example: grid = 20 20 20 
 
Note:  
The grid interval must be approximately 1.1Å or smaller. 
 
d_grid 
Specifies the intervals of the grids defined on the system box (default value: none). 

Usage: d_grid = grid interval (Å) 
(The grid interval must be approximately 1.1Å or smaller.) 

Example: d_grid = 1.1 
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Note:  
When specifying "d_grid", it is unnecessary to specify a "grid" value. Once the user defines "d_grid" 

value, MARBLE automatically determines the number of grids in X, Y, and Z directions according to the size of 
the system box. In addition, MARBLE also determines "n_cell" and "n_pe" values, which is usually to be 
defined in [nonbond]. Since it is troublesome to find "n_cell" and "n_pe" values satisfying the conditions 
described in the [nonbond] section, it is recommended to use "d_grid" in usual MD calculations. 

 
5.2.9. [min] 

This section performs the settings on energy minimization calculations. 
 
step 
Specifies the number of steps to perform energy minimization with the steepest descent method (default 

value: none). 
Usage: step = number of steps 
Example: step = 1000 

 
print_step 
Specifies the frequency of outputting energy values obtained with energy minimization calculation, using 

the number of steps (default value: 1). 
Usage: print_step = number of steps 
Example: print_step = 10 

 
cg_step 
Specifies the number of steps to perform energy minimization with the conjugate gradient method 

(default value: 0). 
Usage: cg_step = number of steps 
Example: cg_step = 1000 

 
Note:  
When both "step" and "cg_step" are specified, the steepest descent method is first performed with the 

number of steps specified in "step", and the conjugate gradient method is performed with the number of steps 
in "cg_step". 

 
grad 
Specifies the gradient value to judge the convergence of energy minimization (default value: 1.0e-4). 

Usage: grad = gradient value 
Example: grad = 2.0e-4 

 
5.2.10. [md] 

This section performs the settings on molecular dynamics simulations. 
 
time_step 
Specifies the time increment per step in molecular dynamic simulations. 

Usage: time_step = time increment per step (fs) 
Example: time_step = 2 

 
step 
Specifies the number of steps for molecular dynamics simulations (default value:  0). 

Usage: step = number of steps 
Example: step = 500000 
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prop_file 
Specifies the data output file (prop file) for molecular dynamics simulations (default value: none). 

Usage: prop_file = file name 
Example: prop_file = md1.prop 

 
prop_step 
Specifies the frequency of outputting data onto prop files (default value: 100). 

Usage: prop_step = number of steps 
Example: prop_step = 1000 

 
trj_file 
Specifies the file (trj files) to output trajectories of molecular dynamics simulations (default value: none). 

Usage: trj_file = file name 
Example: trj_file = md1.trj 

 
trj_step 
Specifies the frequency of outputting data onto trj files (default value: 100). 

Usage: trj_step = number of steps 
Example: trj_step = 1000 

 
trj_output 
Specifies the information to be output in trj files (default value: XB). 

Usage: trj_output = {X|V|B}(X: coordinate, V: velocity, B: box data) 
Example: trj_output = XB 

 
print_step 
Specifies the frequency of outputting the energy values obtained with molecular dynamics simulations, 

using the number of steps (default value: 1). 
Usage: print_step = number of steps 
Example: print_step = 10 

 
remove_momentum 
Specifies whether or not to remove translation and rotation of target proteins during molecular dynamics 

simulations. 
Usage: remove_momentum ={off|all|all_rotation|solute_translation|solute_rotation} 
Example: remove_momentum = solute_rotation 
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