ZZ-HIFU:
Simulator for High-Intensity
Focused Ultrasound Therapy

An ultrasound propagation simulation for cancer treatment
using high-intensity focused ultrasound (HIFU)

version 1.00,
11 Feb. 2013

Copyright (c) 2013 the University of Tokyo, Japan.

Research and Development of the Next-Generation Integrated Simulation of Living Matter
Department of Mechanical Engineering, School of Engineering, the University of Tokyo
Principal developer: Yoichiro Matsumoto (Professor, the University of Tokyo)
Signatured by Kohei Okita (okita.kohei@nihon-u.ac.jp)

Table of Contents

1.

2.

5.

Files included in thiS PACKAGEveviiiiiciee ettt sttt seenneenes 1
(000 0T o1 E U [0] T Ta o =)ol o PSSRSO 2
S I 0111 o1 -1 [o o ISP 2
2.2 EXECULION ...ttt bbb bbbt b b £ et b e b b £ R bR bR e bbb e e Rt et e e ne e 2
Yo U orcloa o (3N =T To | 110 To SO SSS 3
K J0 R |11 oo [1 o o] IO OO OO OO UR PR 3
3.2. ZZ-HIFU-K.F source code cOMPiling SEIINGScoviviieieiiiisieie sttt nne s 3
3.3. Description of ZZ-HIFU-K.F MOQUIES..........cccoviiiiiiieiiec ettt nne s 6
3.4. About physical _propertieS.FO0.........coiiiieii it e b nre s 9
Executing Application Using Specified INPUL DAtccccccveiiiiii i 10
T AN o To TV o [0 A = L OSSR 10
4.2. Creating volume data using signed distance TUNCHION............coiiiiiiiiniee e 10
4.3, Visualizing CalCUIAtioN FESUILSciviiieie sttt e st st sre e e renreas 10
RETEIBNCES ...ttt bttt bbbt bt s b e e bt e b e e b e b e Rt e b e e b e s b e e e b e eb e s b e b e b e e be e bt nb e e ebenbe b e 11

1.Files included in this package

1. Files included in this package

ZZ-HIFU-K.F: Source code of the ultrasound propagation simulation

physical_properties.F90: Source code of the module for setting IDs and the physical property values
Makefile: for compiling the source code to install the binary ZZ-HIFU program

mpijob.sh: a shell script to execute jobs

README: this file

COPYING: copyright description

2.Compilation and execution

2. Compilation and execution

2.1. Compilation

Compilation of the source code requires modifying the ‘Makefile’ provided in accordance with the
computational environment, and is performed by the ‘make’ command.

2.2. Execution

Prior to executing an application, the sample shell script “mpijob.sh’ needs to be edited in accordance with
the computational environment, including entering jobs in the job scheduler given by the particular computing
environment.

3.Source code handling

3. Source code handling

3.1. Introduction

ZZ-HIFU-K.F performs the simulation of pressure wave propagation in various multicomponent media. The
following subsections explain the source code compilation settings, as well as the roles of modules and
subroutines. See references 1 and 2 for details of the basic equations and their discretization.

3.2. ZZ-HIFU-K.F source code compiling settings

The source code of ZZ-HIFU-K.F provides the optional compilation settings in its header section, allowing
the direct editing of source code or the selection of compilation options.

! Use MPI

! Specifies whether using MPI or not.

cttdefine USE_MPI_

!

! Use buffer send receive

! Specifies whether or not to use buffer in I direction for data transmission and reception.

c#tdefine _ BUFFER_SENDRECEIVE_

!

! Specifies whether or not to use buffer in J direction in addition to I direction for data transmission
and reception.

c#tdefine BUFFER_J

!

! Specifies whether or not to use buffer in K direction in addition to I direction for data transmission
and reception.

c#define BUFFER_K

! Specifies whether or not to generate a benchmark test code that requires no data input.

cttdefine TEST

!

! Check results for sample input

! Specifies whether or not to check the result of the executed test code.

cttdefine TEST CHECK DATA_

!

! The size and division are obtained from command argument

! Specifies whether or not to set the size of calculation domain and its divisions as command line

arguments in test code execution.
cttdefine ARGUMENT

! Number of computational grid

! Specifies the number of grid points in X or I direction.
c#tdefine _NX_ 1400

!

! Specifies the number of grid points in Y or J direction.
cttdefine NY_ 600

!

! Specifies the number of grid points in Z or K direction.
c#define _NZ_ 1200

!

! Number of grid for PML

! Specifies the number of grid points for the PML.
cttdefine NPML,_ 20

3.Source code handling

! Grid resolution dx = dy = dz
! Width of calculation grid
ct#tdefine _PITCH_ .1d-3

! Division of numerical domain

! NPROCS must be _IDIM_* _JDIM_ * _KDIM_

! Specifies the number of divisions of the domain in I direction.

cttdefine _IDIM_ 8

!

! Specifies the number of divisions of the domain in J direction.
cttdefine _JDIM_ 2

!

! Specifies the number of divisions of the domain in K direction.
cttdefine KDIM_ 4

! Total time step

! Specifies time step.

c#tdefine _NSTEPMAX_ 10000

!

! Specifies the starting time step to record statistical volume data.
cttdefine CHECK_IN_ 9000

!

! Data save

! Specifies the time step interval to save three-dimensional data.
cttdefine _DATA3D_SAVE_ 500

!

! Specifies the time step interval to save two-dimensional data.
cttdefine DATA2D SAVE_ 20000

!

! Specifies the name of a file for restarting calculation in which the restart file is saved.
c#tdefine _RESTART FILE NAME_ '("restart-",i3.3,".bin")"

!

! Specifies the restart file to load to begin restarting calculation.
cttdefine RESTART

!

! Specifies whether or not to reset temperature to zero when restarting takes place.
c#tdefine _RECALCULATION_TEMP_

! Specifies whether or not to produce a sound from the sound source set at the target.

c#tdefine _HearingMode_

!

! Specifies the table to store the transducer coordinates that save the time-series pressure data.
cttdefine RecordPointsTable "VcenterNewlID.table"

!

! Specifies whether or not to maintain the time-series pressure data at the specified coordinates.
c#define _RecordPatPiezo_

!

! Specifies whether or not to save the time-series pressure data at the focal point.

cttdefine RecordPatFocalPoint_

! Specifies the table for setting phase delays to the transducer arrays.
ct#tdefine _PhaseDelayTable_ "PhaseDelayCC.table"

! Position of Focal Point
! Specifies the X coordinate of the focal point.

4

3.Source code handling

cttdefine FocalPointX_ 0.d-3

!

! Specifies the Y coordinate of the focal point.
cttdefine FocalPointY 0.d-3

!

! Specifies the Z coordinate of the focal point.
cttdefine FocalPointZ_ 0.d-3

! Using Tait eq. for the equation of state of water
! Applies the Tait calculus to represent the state of material.
cttdefine EOS_TAIT

! CFL number
! Specifies the Courant number.
cttdefine CFL_0.1d0

! Temperature
! Obtains the time evolution in the temperature field.

cttdefine _"TEMPERATURE_

!

! Time scale for Temperature

! Obtains the timescale ratio between ultrasound propagation and temperature.
cttdefine DTAU_1d+6

! Denaturation

! Obtains the time evolution in the thermal denaturation.
cttdefine _ DENATURATION_

!

! Increase of acoustic impedance due to denaturation

! Obtains rate of change of sound velocity accompanying the thermal denaturation.
cttdefine DENATURATION _CS_1.d0

! Viscosity term is solved implicitly
! Specifies the number of loops when the viscosity term is solved implicitly.
cttdefine IMPLICIT VIS 3

! Specifies the list of file names containing transducer shape data.
ct#define _PIEZO_DATA_LIST '("./PiezoList/",i3.3," list")'

!

! Specifies the list of file names containing partial domain shape data.
c#define PARTS_DATA_LIST '("./PartsList/"i3.3," list")’

!

! Specifies the volume data of the objects.

ct#tdefine _OBJECT_DATA_ '("../Objects/Empty/",i3.3,"-ev.sph")'

! Pressure constant in Tissue with Air properties
! Sets the pressure constant in air domain.
cttdefine CONST PRESSURE_AIR_

! Using array of constants for not binary but mixture model
! Employs arrays as constants.
c#tdefine _ARRAY_CONST_

! No heat conduction in air
! Sets the heat conduction at zero in air domain.
cttdefine ZERO HEATCONDUCTION_AIR

5

3.Source code handling

! Boundary Condition

! Specifies the boundary conditions for the PML.
cttdefine PML X0_

cttdefine PML X1 _

cttdefine PML _YO_

cttdefine PML Y1 _

cttdefine PML _Z0_

cttdefine _PML_Z1_

!

! Specifies the symmetric boundary conditions.
cttdefine MIRROR,_XO0_

c#tdefine _ MIRROR_X1_

cttdefine MIRROR,_YO

cttdefine MIRROR_Y1

cttdefine MIRROR,_Z0_

c#tdefine _ MIRROR,_Z1_

3.3. Description of ZZ-HIFU-K.F modules

module Grid
A module to set grid pitch

module FDM
A module to set interpolation and difference coefficients

subroutine FDM_ Init
Specifies interpolation and difference coefficients.

subroutine FDM_Operator(xc,n,xk,d0k,d1k)
Specifies interpolation and difference coefficients using Lagrange interpolation.
See reference 3 for further details.

module Array_Index
A module to specify index of arrays

subroutine Array_Global_Index_Init(, j, k)
Specifies index of arrays.

subroutine Array_Index_Init(ista, iend, jsta, jend, ksta, kend)
Specifies index of arrays.

module MyMPI
A module to perform inter-process data communications between divided domains

subroutine MyMPI_init_comm_cart(l, m, n)
See reference 4 for further details.

subroutine MyMPI_init_comm_cart
See reference 4 for further details.

subroutine PARA. RANGE(N1, N2, NPROCS, IRANK, ISTA, IEND)
See reference 4 for further details.

subroutine MyMPI_init_type_vector
See reference 5 for further details.

3.Source code handling

subroutine MyMPI_Allocate_Buffer_Array
Allocates an array for data transmission and reception using buffer.

subroutine MyMPI_SendReceive_pO(iband, jband, kband, p0, vec)
Data transmission and reception using buffer

subroutine MyMPI_SendReceive_u (iband, jband, kband, u, vec)
Data transmission and reception using buffer

subroutine MyMPI_SendReceive_v (iband, jband, kband, v, vec)
Data transmission and reception using buffer

subroutine MyMPI_SendReceive_w (iband, jband, kband, w , vec)
Data transmission and reception using buffer

subroutine MyMPI_SendReceive_T (iband, jband, kband, T, vec)
Data transmission and reception using buffer

subroutine MyMPI_sendp(iband, jband, kband, p, vec, ireq)
Data transmission and reception using derived data type
See reference 5 for further details.

module Parts
A module for handling partial domain data

subroutine dtloadfp(fname, delta, orig, sp)
Loading SPH data of partial domain

subroutine Parts_Load(fname, nsp, sp)
Loading SPH data of partial domain

subroutine Parts SDFtoVF(nsp, sp)
Obtains volume fraction converted by the Signed distance function.

module PML
A module for the Perfectly matched layer

subroutine PML_Init
Specifying coefficients used by the Perfectly matched layer

module HIFU3D
A module for simulating ultrasound propagation

subroutine HIFU3D_Allocate
Allocates arrays.

subroutine HIFU3D_Initialize_Array
Initializes arrays.

subroutine HIFU3D_Restart(fname, ifrag, nstep)
Saves and loads restart file.

subroutine HIFU3D_Constant_Mixture_Properties
Specifies constants for calculating physical property values.

3.Source code handling

subroutine HIFU3D_Update_Mixture_Properties
Updates physical property values.

subroutine HIFU3D_BC_Mirror(dims, sp)
Specifies symmetric boundary conditions.

subroutine HIFU3D_Cal_Viscous
Calculates viscosity terms

subroutine HIFU3D_Cal U
Updates velocity components in X direction.

subroutine HIFU3D_Update_Boundary_U
Updates symmetric boundary conditions for velocity components in X direction.

subroutine HIFU3D_Cal V
Updates velocity components in Y direction.

subroutine HIFU3D_Update_Boundary_V
Updates symmetric boundary conditions for velocity components in Y direction.

subroutine HIFU3D_Cal W
Updates velocity components in Z direction.

subroutine HIFU3D_Update_Boundary W
Updates symmetric boundary conditions for velocity components in Z direction.

subroutine HIFU3D_Cal_P
Updates pressure.

subroutine HIFU3D_Cal_Boundary_P
Updates non-reflecting boundary conditions for pressure.

subroutine HIFU3D_Update_Boundary_P
Updates symmetric boundary conditions for pressure.

subroutine HIFU3D_Cal_Grad_ T
Calculates temperature gradient.

subroutine HIFU3D_Cal T
Updates temperature.

subroutine HIFU3D_Update_Boundary_T
Updates boundary conditions for temperature.

subroutine HIFU3D_Cal_Dose
Calculates the Thermal dose.

subroutine HIFU3D_Cal_Grad_Phi
Calculates order parameter gradients.

subroutine HIFU3D_Cal Phi
Updates order parameters.

subroutine HIFU3D_Update_Boundary_Phi
Updates boundary conditions of order parameters.

3.Source code handling

Other functions

subroutine dtloadS(nstep, fname, delta, orig, dims, sp)
Loads three-dimensional scalar data in SPH format.
See reference 6, “V-Isio manual,” for detailed information on format.

subroutine dtsaveS(nstep, fname, delta, orig, dims, sp)
Saves three-dimensional scalar data in SPH format.

subroutine dtsaveS2D(nstep, fname, delta, orig, dims, sp
Saves two-dimensional scalar data in SPH format.

subroutine Input_TestData (omega, rho, cs)
Creates input data for test calculation.

subroutine Check TestResults
Confirms the result of calculation test.

3.4. About physical_properties.F90

physical_properties.F90 is the source code of a module that relates physical properties of a material to
corresponding ID numbers. It requires appropriate modifications for actual calculations. The physical property
values of organs are obtained from reference 7.

4.Executing Application Using Specified Input Data

4. Executing Application Using Specified Input Data

4.1. About input data

To perform simulation of ultrasound propagation in the target material, one of three input data listed below
should be used.

* Volume data representing the shape of transducers serving as sound source (using a signed distance
function)

* Volume data of target material (ID number or data denoting distribution of a material such as volume
fraction)

* Volume data representing the shape of constituents other than two types listed above (using a signed
distance function)

The above input data need to be prepared per each divided domain for parallel process computation. The
shape data given by signed distance function requires the input data needed to express the shape of the given
partial domain. These input data should be provided in SPH format (see reference 8). The ID numbers for the
shapes given by the signed distance function are given using two digits before the *.sph’ file extension.

In the case of parallel computation, a list of data for each divided domain to be executed by each process
helps to load appropriate input data to each divided domain calculation. This is achieved by reading a specified
data list at the time of compilation. A data list can be created and defined as an optional compilation setting, as
shown below.

! List of the names of files holding transducer shape data.
c#define PIEZO_DATA_LIST '("./PiezoList/"i3.3," list")'

!

! List of the names of files holding shape data of divided domains
ct#tdefine _PARTS_DATA_LIST_'("./PartsList/",i3.3," list")’

!

! Volume data of the objects

cttdefine _OBJECT_DATA_ '("../Objects/Empty/",i3.3,"-ev.sph")'

4.2. Creating volume data using signed distance function

The V-SDFIib signed distance function (SDF) generation library developed by RIKEN’s VCAD System
Research Program is helpful in obtaining the volume data using SDF converted from the shape data created by
CAD software.

4.3. Visualizing calculation results

The V-Isio, visualizing software also developed by the VCAD System Research Program of RIKEN, is able
to visualize SPH format output data. In this example, since the output data represents each divided domain, it is
required that those data be merged into single volume data to visualize a whole image.

10

5.References

5. References

[1] K. Okita et. al., Development of High Intensity Focused Ultrasound Simulator for Large Scale
Computing, Int. J. Numerical Methods in Fluids, Vol.65, pp.43-66, 2011.

[2] K. Okita et. al., Numerical Simulation of the Tissue Ablation in High Intensity Focused Ultrasound
Therapy with Array Transducer, Int. J. Numerical Methods in Fluids, Vol.64, pp.1395-1411, 2010.

[3] T. Kajishima, Numerical Simulation of Turbulent Flow, Yokendo Publishing Co., 1999

[4] Y. Aoyama, Practical MPI Programming, RIKEN Advanced Center for Computing and Communication,
2005.

[5] Benchmark test by R. Himeno, http://accc.riken.jp/2145.htm

[6] V-Sphere, http://vcad-hpsv.riken.jp/jp/release_software/V-Sphere/

[7] International Commission on Radiation Units and Measurements, Tissue Substitutes, Phantoms and
Computational Modelling in Medical Ultrasound, ICRU Report 61, 1998; 43-51.

[8] V-SDFlib, http://vcad-hpsv.riken.jp/jp/release_software/\VSDFlib/

11

	1. Files included in this package
	2. Compilation and execution
	2.1. Compilation
	2.2. Execution

	3. Source code handling
	3.1. Introduction
	3.2. ZZ-HIFU-K.F source code compiling settings
	3.3. Description of ZZ-HIFU-K.F modules
	3.4. About physical_properties.F90

	4. Executing Application Using Specified Input Data
	4.1. About input data
	4.2. Creating volume data using signed distance function
	4.3. Visualizing calculation results

	5. References

