MARBLE-K講習会

1

2014年10月24日 山根 努

1. MARBLEの概要・研究例

2. MARBLEによる計算実習

分子動力学(MD)シミュレーション

Martin Karplus

Photo: A. Mahmoud Arieh Warshel

(http://www.nobelprize.org/)

Photo: A. Mahmoud

Michael Levitt

✓全原子数~16万

✓数千万~数十億 ステップの計算

✓スパコンが必要

MARBLE(MoleculAR Simulation program for BiomoLEcules)

- 蛋白質をはじめとする生体高分子の全原子シミュレーションを目的として開発され た分子シミュレーションプログラム
- X線・中性子溶液散乱、NMR、質量分析等、各種構造生物学データを活用した生体 分子構造機能解析を行うことを目指して開発。

MARBLE Home Page

MARBLE HOME PAGE (http://tsurumi.yokohama-cu.ac.jp/bioinfo/marble)

MARBLEのパッケージ マニュアルをダウンロードできます。

メーリングリスト(marble-users)開設

並列化の方法

- シミュレーションを行う系の空間をX, Y, Z方向に等間隔な複数のセルに分割
- 並列計算に用いるプロセスをX, Y, Z方向に配置。
- 各プロセスが、配置された場所の空間上隣接する複数のセルの計算を担当 するように分割。

MARBLEでは、インプットファイル中でPME(Particle Mesh Ewald)法のパラ メータd_gridを指定することで自動的にセルの分割とプロセスの配置数を算 出して計算を実行している

計算速度(small system, FX10)

Ubiquitin (76 residues, 1231 atoms) in explicit water (7713 water molecules) Total Number of Atoms: 24370

Periodic Boundary Condition: 62.17 [A] x 62.17 [A] x 62.17 [A] PT Control: NVE ensemble

計算速度(large, FX10)

AcrB (1033x3 residues, 47554 atoms) in explicit water (108565water molecules) and lipid (811 POPE molecules) Total Number of Atoms: 474665 Periodic Boundary Condition:167.17 [A] x 167.17 [A] x 165.61 [A] PT Control: NVE ensemble

計算速度(large, K)

AcrB (1033x3 residues, 47554 atoms) in explicit water (108565water molecules) and lipid (811 POPE molecules) Total Number of Atoms: 474665 Periodic Boundary Condition:167.17 [A] x 167.17 [A] x 165.61 [A] PT Control: NVE ensemble

MARBLEを用いた計算例)

2014年10月24日 山根 努

Asp196 (DNA結合タンパク質 水を介した PhoB 分子認識 0,8 S S 0,2 140 160 200 220 残基番号 オーダーパラメータの検証 (赤:計算、青:実験)

(JACS, 2010)

● 実験データを再現
 ● ダイナミクスに関する情報が得られる

<u>X線溶液散乱実験での例</u>

制限酵素EcoO109I

構造ゆらぎ方向(赤)と 構造変化方向(青)の一致

散乱プロファイルの検証 (青:計算、ピンク:実験)

(Biophys J, 2009)

MARBLEを用いた研究例

多剤排出トランスポーターAcrBの分子動力学シミュレーション

大腸菌などのグラム陰性細菌に存在 ●大腸菌のもつ薬剤抵抗性の主要因

> 排出するもの…抗生物質 消毒剤、抗がん剤、色素性毒素、界面活性剤 など

全長1049残基のモノマーのホモ3量体

Murakami et al., Nature , 419, 587-593 (2006)

Outer

membrane

H+

AcrA/AcrB/TolC

ToIC

AcrA

MARBLEを用いた研究例 多剤排出トランスポーターAcrBの分子動力学シミュレーション

大腸菌などのグラム陰性細菌に存在 ●大腸菌のもつ薬剤抵抗性の主要因

排出するもの…抗生物質、消毒剤、抗がん剤、 色素性毒素、界面活性剤など

13

プログラム: MARBLE (Ikeguchi) 力場: CHARMM 27 長距離相互作用: (Particle-mesh Ewald) アンサンブル: NPT シミュレーション温度:300K, 時間刻み:2fs

System

Lipid : POPE 809 molecules (101,125 atoms) water : TIP3P model 108,385 molecules (325,155 atoms) protein : (**PDB ID: 2DHH**) (47,724 atoms) lon : Na⁺ (36 atoms) **Total : 474,040 atoms** Box size: 160Å X 160Å X 180Å

MARBLEを用いた分子動力学計算の実習)

ノイラミニダーゼ・オセルタミビル(タミフル)複合体の分子動力学計算

実習の流れ

(1)MARBLEによる分子動力学計算の実行

(2)計算結果の観察(VMDを用いて)

18

➢ 初期構造(PDBファイル)をもとに以下の操作をする。

(1) 力場の指定(基本的にCHARMMフォーマットの力場を用いる)

(2) モデルビルディング:初期構造について以下の操作をする。

✓ 部分的に欠損している原子を補う(水素や重原子)

(3)システムビルディング:蛋白質分子周辺の環境を構築

crdファイル:構築された系の情報を含むファイル。以降のMARBLE でのエネルギー最小化計算は、このファイルの情報で

mdatファイル:構築された系の力場、ボックスなどのパラメータ情報 を含む。以降のMARBLEでの全ての計算で用いる。

(1) MARBLEによる分子動力学計算の実行 MARBLEで出力されるファイル

pdbファイル

MARBLE実行時の系の最終構造の座標

crdファイル(molxでも生成される)

- MARBLE実行時の系の最終構造の座標
- 最終構造の速度
- 周期境界の箱の情報
- アンサンブルの情報(温度・圧力)

trjファイル

系の経時変化情報。
 (座標・速度・周期境界の箱の情報)

propファイル

計算途中のさまざまな変化量

outファイル(標準出力)

- 実行した計算内容
- ▶ エネルギー・圧力・温度・実行速度の情報

CHARMM力場について

CHARMM 力場は以下のアドレスからダウンロード http://mackerell.umaryland.edu/CHARMM_ff_params.html

C 🖬 🗋 mad	kerell.umaryland.edu/CHARMM_ff_params	s.html	: w				
ブックマーク 🧰 IE ブ	ックマーク (1) 😑 Web スライス ギャ… 🕒 おすすめ	カサイト 🕒 Active! mail 👌 Dell Start Page 🔷 👌	・ 🧀 その他のブックマー				
CI	HARMM FF Parame	eters					
	CADD Center	PSC Department					
HOME	NKS Empirical force field parametrization efformaintained in the laboratory of Profess University.	rts are coordinated with the program CHARMM, which is sor Martin Karplus, Department of Chemistry, Harvard					
Resea	rch CHARMM. Note that this release includes standard topology and parameter files for f	topology and parameter nies available in version C31B1 o s a change in the organization of the toppar directory. The the biological molecules (e.g. proteins, nucleic acids etc.					
Public	ations These files are in the stream subdirector parameter files and then streaming the ap	have not changed except for a number of the model compounds being moved to toppar stream files. These files are in the stream subdirectory and are used by first reading the parent topology and parameter files and then streaming the appropriate toppar stream file to add the additional residues.					
Group Memb	of the topology and parameters files for the Al	the inclusion of additional model compounds.					
Lab V	iki allowing for modeling studies with CHA subdirectory.	ARMM using these force fields. See the non_charmm					
Conta Inform CH CHAF	An overview of the parameter optimization found in the following references or in Ma mountational Biochemistry and Biophy M Watanabe, Eds., Marcel Dekker, Inc. 1 "See the following link: <u>http://www.dek</u> MM publisher is now Taylor & Francis and the	approaches to extend the CHARMM force fields may be ackerell, A.D., Jr. "Atomistic Models and Force Fields" in sics. O.M. Becker, A.D. Mackerell, Jr., B. Roux and lew York, 2001, p. 7-38. <u>keer com/sen/et/product/product/d/0455-X</u> . Note that the book is available via <u>Amazon com</u>					
Force	Fields * Please reference the parameters as indi-	icated in the individual topology and parameter files.					
Devel	rces						
CHAF Tutori CHAF Links/	Toppar files with the C37 release of CHAR Milipid and carbohydrate releases as well a late force field (eg. proteins and nucleic acids) contain both the protein and nucleic acids icon tain both the protein and nucleic acids biomolecular or CGenFF toppar files. See details including an example on how to re-	XMM. These include the C36 additive protein, nucleic acid is the CGenFF files as of July 2012. Note that the toppar hem to be read individually such that different parts of the parameters. Note that this includes a toppar stream file read as water and the ions are no longer included in the .00toppar_file_format txt, included in the .tgz file, for ad the files into CHARMM.					
/	Note that the replacement of toppar_c36_ change in the ordering of atoms in selecte	jul12.tgz with toppar_ceC aug12.tgz only involved a ed lipids.					
	toppar_c36_aug12.tgz						
	Toppar files with c35b2, c36a2 release of	CHARMM.					
	toppar_c35b2_c36a2.tgz						
	Toppar files for CHARMM36 all-atom carb	ohydrate force field.					
	toppar carb apr12.toz						

CHARMM力場 CHARMM22, 27, 36など

→ この辺からダウンロードできます

CHARMM力場

Top(トポロジー)ファイルとpar(パラメータ)ファイルからなる

- ▶ topファイル:分子のトポロジーに関する情報
 各残基や分子の情報(構造と部分電荷の情報)
 化学修飾を行うパッチ(末端の処理、ジスルフィド結合、プロトン化など)
- ▶ parファイル:計算に用いるパラメータに関する情報 (原子名の定義、力の定数、結合長、結合角、LJパラメータなど)
- ▶ topparファイル:分子の種類によっては、topparファイルとして、 topファイルとparファイルの内容が合わせて書いてある。

Topファイルを見て計算したい分子の情報がなければ、 新たにtopとparファイルの情報を作る必要があります。

今回の計算の中で用いているタミフルは、 CHARMM36のパラメータセットであるcgen_ffを用いて構築しました。 (あとで説明します)

CHARMM力場の例 (topファイル:各残基や分子の情報)

残基のトポロジー情報の例(アラニン)(top_all36_prot.rtfより)

残基名	\frown			л х <u> </u>		エフ ク			
	REST ALA		ҤѦҜ҄Ѵ	=	汤 じの!!	京于 名			
	GROUP		0.00	部分	雷荷	_			
	ATOM N	NH1	-0.47						
	ATOM HN	н	0.31	! HN-I	N				
	ATOM CA	 Ст1	0.07	1	I HB1				
	атом на	HB1	0.09		/				
	GROUP			· / HA-(CACB-HB2	2 と 構成す	ス百ヱの	情報	
	ATOM CB	СТЗ	-0.27	1	¥		る(引] く)		
	ATOM HB1	HA3	0.09		, – НВЗ				
	ATOM HB2	НАЗ	0.09	! 0=0	C				
	ATOM HB3	НАЗ	0.09	!	1				
	GROUP								
	ATOM C	с	0.51						
	ATOM O	0	-0.51						
	BOND CB	CA N	HN N C	A					
	BOND C	CA C	+N CA H	A CB HI	в1 СВ НВ2	2 CB HB3			
	DOUBLE O	С							
	IMPR N -	C CA HN	C CA +	N O R					
	CMAP -C	N CA	C N	CA C -	+N				
	DONOR HN	N							
	ACCEPTOR	ос							
	IC -C	CA *N	HN	1.3551	126.4900	180.0000 115.42	00 0.9996 -		中空间有些小学人生的大
	IC -C	N CA	С	1.3551	126.4900	180.0000 114.44	00 1.5390	✓	内部座標形式で指定さ
	IC N	CA C	+N	1.4592	114.4400	180.0000 116.84	00 1.3558		れた残其の標準的な構
	IC +N	CA *C	0	1.3558	116.8400	180.0000 122.52	00 1.2297		
	IC CA	C +N	+CA	1.5390	116.8400	180.0000 126.77	00 1.4613	L	 道ົົົຖ 敢。
	IC N	C *C	A CB	1.4592	114.4400	123.2300 111.09	00 1.5461		Molyでの水 素 同 子 お 上
	IC N	C *C	A HA	1.4592	114.4400	-120.4500 106.39	00 1.0840	,	
	IC C	CA CB	HB1	1.5390	111.0900	177.2500 109.60	00 1.1109		ひそのほかの欠損原子
	IC HB1	CA *C	B HB2	1.1109	109.6000	119.1300 111.05	00 1.1119		の補空に田いられる
	IC HB1	CA *C	B HB3	1.1109	109.6000	-119.5800 111.61	00 1.1114 _	J	

CHARMM力場の例(topファイル:パッチ)

パッチの例:ジスルフィド結合(top_all36_prot.rtfより)

PRES DISU	-0.36 ! patch ! use i ! follc	for disulfides. H n a patch statemer w with AUTOgenerat	Patch must nt te ANGLes I	be 1-CYS a	and 2-CYS.	
GROUP ATOM 1CB CT2 ATOM 1SG SM GROUP ATOM 2SG SM ATOM 2CB CT2 DELETE ATOM 1 DELETE ATOM 2 BOND 1SG 2SG IC 1CA 1CB	-0.10 ! -0.08 ! ! -0.08 ! -1CB- -0.10 ! HG1 HG1 1SG 2SG 0.0000 2SG 2CB 0.0000	2SG2CB / -1SG 0.0000 180.0000	0.0000	0.0000		
IC 1SG 2SG	2CB 2CA 0.0000	0.0000 180.0000	0.0000	0.0000	Molxはノ	 ペッチで定義されて
パッチの例	:標準的なC末	端(top_all36_p	prot.rtfよ ^し	J)	いる化学	修飾の生成ルール 処理を行っている。
PRES CTER GROUP ATOM C CC ATOM OT1 OC ATOM OT2 OC DELETE ATOM BOND C OT2 DOUBLE C OT IMPR C CA OT ACCEPTOR OT1 ACCEPTOR OT2 IC N CA	-1.00 ! stan ! use 0.34 ! OT -0.67 ! / -0.67 ! -C D ! ¥¥ ! OT 1 2 OT1 C C C C OT2 0.000	dard C-terminus in generate statem 2(-) 1 0 0.0000 180.000	nent 00 0.0000	0.0000		
IC OT2 CA	*C OT1 0.000	0 0.0000 180.000	0.0000	0.0000		

力場について

CHARMM力場の例(parファイル)

▶ 分子中に含まれるさまざまなパラメータを含んでいる

parファイルの例(par_all36_prot.prmより)

原子の質量の情報(MASS)

Δ ΨOMS	topファ	イルで記されているCHARMM力場での原	原子	名の定義
ATOMS				
MASS	31 Н	1.00800 ! polar H		
MASS	32 HC	1.00800 ! N-ter H		
MASS	33 HA	1.00800 ! nonpolar H		
MASS	34 HP	1.00800 ! aromatic H		
MASS	35 HB1	1.00800 ! backbone H		回じ 話 おの 二 主 ぶ +
MASS	36 HB2	1.00800 ! aliphatic backbone H, to CT2		回し裡類の元系でも、
MASS	37 HR1	1.00800 ! his he1, (+) his HG,HD2		複数種類ある
MASS	38 HR2	1.00800 ! (+) his HE1		
MASS	39 HR3	1.00800 ! neutral his HG, HD2		
MASS	40 HS	1.00800 ! thiol hydrogen		
MASS	41 HE1	1.00800 ! for alkene; RHC=CR		
MASS	42 HE2	1.00800 ! for alkene; H2C=CR		
			J	

(1)MARBL	LEによる分	子動力学	計算	の実行		21
HARMM	1力場0	D例(pa	rファイル	,) —	つづきー
▶ 分子中に含	まれるさま	ざまなパ	ラメー	ータを含んでし	いる	
parファイル	レの例(par_	_all36_p	rot.p	rmより)		Bond
BONDS						
V(bond) =	Kb(b - b0)**	*2				T.
!Kb: kcal/m	nole/A**2					
!b0: A						F
!	Kh	b 0				Lbond
!		50				
NH2 CT1	240.000	1.4550 !	From	LSN NH2-CT2		
1	_					
!Indole/Try	ptophan	1 2750 1	£	C3 C3		
CA CAI	305.000	1.3750 !	irom	ca ca methylindole	fit conss	
CPT CA	300.000	1.3600	atm.	methylindole.	fit CCDSS	
CPT CAI	300.000	1.3600 !	atm,	methylindole,	fit CCDSS	
CPT CPT	360.000	1.3850 !	atm,	methylindole,	fit CCDSS	

	よる分子動に	刀字計算の実	行		20
ARMMナ	」場の例	リ(parファ	マイル)) 一つづき	<u>+</u>
分子中に含まれ parファイルの	いるさまざまな 列(par_all36	なパラメータを う_prot.prmより	含んでいる リ))	Angle
ANGLES V(angle) = Kth V(Urey-Bradley ! !Ktheta: kcal/r !Theta0: degree !Kub: kcal/mole !S0: A	neta(Theta - ' y) = Kub(S - ' nole/rad**2 es e/A**2 (Urey-)	Theta0)**2 S0)**2 Bradley)			Eangle
! !atom types ! H NH2 CT1 NH2 CT1 CT2 NH2 CT1 CT3 CT1 CD OH1 CT3 CT1 CD	Ktheta T 50.000 1 67.700 1 67.700 1 55.000 1 52.000 10	heta0 Kub 11.00 10.00 10.50 08.00	SO ! From ! From ! From ! From ! Ala	LSN HC-NH2-CT2 LSN NH2-CT2-CT2 LSN NH2-CT2-CT2 ASPP CT2-CD-OH1 cter	

	ARE		こよる分	トチ動刀字	青丁。	昇の実行	Γ			23
4R	M	いナ]場(の例(Sq	arファ	イ	ル)	ーつづき	·
分子	中に	含まれ	れるさま	ぎまなパ	ラメ	ータを含	h^{-}	でいる		Torsion
par	ファイ	ルの	例(par	_all36_pr	ot.p	ormより)				
DIHE	DRALS									
V (d	lihedr	al) =	Kchi (1	+ cos(n(c	hi)	- delta))	,			50
!	i. ko	al /mo								00
!n:	multi	plici	.ty							
!del	ta: d	egree	s							Г
! !ato !	om typ	es		Kchi	n	delta				E _{torsion}
!Neu	ıtral	N ter	minus							
NH2	CT1	С	0	0.0000	1	0.00				
-	CT1	С	NH1	0.0000	1	0.00				
NH2			(ግጥ 1	0 0000	1	0.00				
NH2 H	NH2	CT1	011	0.0000	-					
NH2 H H	NH2 NH2	CT1 CT1	C	0.0000	1	0.00				
NH2 H H H	NH2 NH2 NH2	CT1 CT1 CT1	C HB1	0.0000	1 3	0.00	!	From LS	N HC-NH2-CT2-HA	
NH2 H H H	NH2 NH2 NH2 NH2	CT1 CT1 CT1 CT1	C HB1 CT2	0.0000 0.1100 0.1100	1 3 3	0.00 0.00 0.00	!	From LS	N HC-NH2-CT2-HA N HC-NH2-CT2-CT2	

(1)	MARBL	Eによる分子重	助力学計	算の実行	÷		30	
;HA	RMM	け場の	例(pa	arファ	イル)	-7:	ゔ きー	
▶ 分	子中に含	まれるさまざま	ミなパラン	ータを含	んでいる		Nonbond (v	dW)
ра	arファイル	の例(par_all:	36_prot.	prmより)				
NONBONDED nbxmod 5 atom cdiel fshift vatom vdistance vfswitch - cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5 !adm jr., 2013 correction								
!V(Len:	nard-Jones	s) = Eps,i,j[(R	min,i,j/r	ci,j)**12 ·	- 2(Rmin,i,j/	[/] ri,j)**6]		
!epsil !Rmin/: !	on: kcal/m 2: A, Rmin	nole, Eps,i,j = n,i,j = Rmin/2,	sqrt(eps i + Rmin/	s,i * eps, <u>:</u> 2,j	j)		E_{nonh}	hond
!atom !	ignored	epsilon	Rmin/2	ignored	eps,1-4	Rmin/2,	1-4	/0///0
!carbo	ns							
С	0.00000	-0.110000	2.00000	I ALLOW	PEP POL ARC)		
		! NMA pure sol	vent, adm	ı jr., 3/3,	/93			
CA	0.000000	-0.070000	1.992400	I ALLOW	ARO			
CC	0 00000	! Denzene (JES)		סבים האם	`		
	0.000000	-0.070000	92. aceti	c acid he	at of solvati	on		
CD	0.000000	-0.070000	2.000000	I ALLOW	POL			
		! adm jr. 3/19	/92, acet	ate a.i. a	and dH of sol	lvation		
CE1	0.00000	-0.068000	2.090000) !				
		! for propene,	yin/adm	jr., 12/9	5			
CE2	0.000000	-0.064000	2.080000	10/05				
		: for etnene,	yın/adm]	12/95				
•••••	••••••••••••••••							

本日の実習の流れ

計算例:ノイラミニダーゼ+タミフル (オセルタミビル)

使用する構造(PDB_ID:2hu4 A chain)

http://kusuri-jouhou.com/training-course/influenza8.html

MDの準備(molxの実行) Molxを実行する前にチェックすること

✓ 構造に欠損がないか?

使用する構造(PDB_ID: 2hu4 A chain)は.....

両末端領域が欠損→各末端をそれぞれAce, NMe(CT3)にする。

水素原子がない→molxで自動的に発生させる

MDの準備(molxの実行) Molxを実行する前にチェックすること

✓ アミノ酸のプロトン化状態の決定(特にヒスチジン)

使用する構造(PDB_ID: 2hu4 A chain)は..... 7つのヒスチジン残基が存在

→pKaを予測するプログラム等を利用する(例:H++) H++のホームページ(http://biophysics.cs.vt.edu)

CHARMMで用いられている ヒスチジンのタイプ

PDBファイルから プロトン化にかかわるアミノ酸の pKaを計算してくれる

4. MDの準備(molxの実行) Molxを実行する前にチェックすること

✓ パラメータが準備されていない分子、残基を含んでいるか?

使用する構造 (PDB_ID: 2hu4 A chain) は.....

* cgen_ffの詳細は、各種の チュートリアルのページなどを 検索して参考にしてください。 (例えば、http://www.cecam.org/ workshop-5-805.html)

→(CHARMM36では)cgen_ffパラメータセットから、 topparファイルを作成するサイト(ParamChem)を利用

ParamChemのホームページ (https://cgenff.paramchem.org/) 【1:MARBLEによる分子動力学計算の実行】

横浜市大の鶴見キャンパスのスパコンCray XE6にログインして、MARBLE-KによりMD計算を行います。

● まず、Linuxを立ち上げ、ログインし、端末ウインドウを開きます。 (端末は、デスクトップ上で右ボタンをクリックして"端末を開く"を選びます)

- 端末ウインドウから、下記のコマンドでスパコンにログインします。 [ike@pc101 ~]\$ ssh -X guest??@192.168.1.4
 パスワードは、guest??です。 ??:指示された数字が入ります。
- koushuディレクトリに入ります。

guest01@bits1:~> cd koushu

4. MDの準備(molxの実行)

molxディレクトリに入ります
 guest01@bits1:~/koushu> cd molx

molx.inの中を開きます guest01@bits1:~/koushu/molx> less molx.in

molxコマンドを実行します。
 molx インプットファイル > アウトプットファイル
 guest01@bits1:~/koushu/molx> ../bin/molx.0.6.3-cray molx.in > molx.out

molxを実行すると、以下の 2hu4-molx.crd:MD計算に利用する座標ファイル 2hu4-molx.mdat:MD計算に用いるパラメータファイル 2hu4-molx.pdb:molxを実行後の座標の確認用PDBファイル

の3ファイルができます。

● molx.logの中身を開きます。 guest01@bits1:~/koushu/molx> less molx.out Molx (Version 0.6.3) Host: bits1 Date: Wed Oct 15 20:34:48 2014 Control File: molx.in CHARMM TOP FILE: ../toppar/top all36 prot.rtf Version 36.1 Number of types of atomic mass : 53 エラーや警告に注意して眺めるべし! Number of residues : 23 Number of residues for patching : 23 Molecular Data (mdat) Information: Number of atoms: 40368 Number of atom types: 63 Number of residues: 11949 Number of molecules: 11565 Number of bonds: 40396 Number of bond types: 105 Number of angles: 22093 Number of angle types: 226 ファイルの最後に出力される Number of dihedrals: 15618 (term: 18495) Number of dihedral types: 478 系のサマリーもチェックする。 Number of impropers: 1023 Number of improper types: 19 Number of cmap terms: 385 Number of cmap types: 5 Number of solute molecules: 2 Total charge: -0.000000 Periodic Boundary Box: 74.81 0.00 0.00 0.00 74.81 0.00 0.00 0.00 74.81

minimディレクトリに入ります guest01@bits1:~/koushu/molx> cd ../minim

● min.inの中を開きます guest01@bits1:~/koushu/minim> less min.in パラメータセット(mdatファイル) [input] mdat file = ../molx/2hu4-molx.mdat 初期座標(crdファイル) crd file = ../molx/2hu4-molx.crd (molxで出力されたもの) [nonbond] 非結合相互作用のカットオフ(Å) cutoff = 10.0[ewald] Particle Mesh Ewaldの逆格子項の計算で用いるメッシュの設定 d grid = 1.1(アウトプットファイルで言及します) [restraint] method = position harmonic 拘束の設定(Position harmonic) group = atom non hydrogen 1A 385A group = atom non hydrogen 800A 800A 蛋白質とタミフルの重原子のみを拘束 crd file = ../molx/2hu4-molx.crd $k = 1.0 \ \# kcal/mol/ang2$ [min] step = 1500 **ト エネルギー極小化のステップ数** (再急降下法) [output] 最終構造のcrdファイル、 crd file = 2hu4-min.crd pdbファイルを指定 pdb_file = 2hu4-min.pdb

● min.shの中を開きます

guest01@bits1:~/koushu/minim> **less min.sh** プロセス数16で1プロセスあたり8スレッドで計算(全部で128コア使用)

★ ● スパコンにジョブを投入します。

guest01@bits1:~/koushu/minim> qsub min.sh

- 自分のジョブが実行されているかを確認します。
 guest01@bits1:~/koushu/minim> qinfo
- ラックの中のどこで自分のジョブが実行されているのかを確認します。
 guest01@bits1:~/koushu/minim> xtnodestat

● 自分のジョブが終了したら、ジョブのアウトプットをみて下さい。 guest01@bits1:~/koushu/minim> less min.out

```
MARBLE (Version 0.6.3)
    Program: ../bin/marble.0.6.3-cray
    Host: nid00076
    PE: 16
    Threads: 8
    Date: Thu Oct 16 07:38:16 2014
    Control File: min.in
    Log File: min.out
    ****
** STEP 1. Read Control File
[input]
mdat file = ../molx/2hu4-molx.mdat
crd file = ../molx/2hu4-molx.crd
[nonbond]
cutoff = 10.0
[ewald]
d grid = 1.1
[restraint]
method = position harmonic
group = atom non hydrogen 1A 385A
group = atom non hydrogen 800A 800A
crd file = ../molx/2hu4-molx.crd
k = 1.0 \ \# kcal/mol/ang2
[min]
step = 1500
[output]
crd file = 2hu4-min.crd
pdb file = 2hu4-min.pdb
```

インプットファイルに書かれている以外の計 算の設定の詳細は"STEP 2. Setup"に書 かれています

- 生成されたファイル2hu4-min.pdb, 2hu4-min.crdがあることを確認してください。
 guest01@bits1:~/koushu/minim> 1s
- エネルギーの履歴をグラフにしてみます。
 guest01@bits1:~/koushu/minim> ./plot-min.sh

ここでは、練習のために、短い計算を行います。(約30分くらい)

 equilディレクトリに移動し、eq01.inを開きます guest01@bits1:~/koushu/minim> cd ../equil guest01@bits1:~/koushu/equil> less eq01.in

<pre>[input] mdat_file =/molx/2hu4-molx.mdat crd_file =/minim/2hu4-min.crd</pre>	
[init] temperature = 10.0	
[nonbond] cutoff = 10.0	
[ewald] d_grid = 1.1	
<pre>[PT_control] ensemble = NVT method = rescaling temperature = 10 gradual_change_T = 25000 300</pre>	アンサンブルの設定(NVT) 温度コントロール(rescaling) 昇温の設定(25,000 stepで10K→300K)
[constraint] rigid_body = hydrogen	水素を剛体として扱う → (水素の結合に関わる振動を固定)
<pre>[restraint] method = position_harmonic group = atom non_hydrogen 1A 385A group = atom non_hydrogen 800A 800A crd_file =/minim/2hu4-min.crd k = 1.0 #kcal/mol/ang2</pre>	━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

- MDを実行するために、スパコンにジョブを投入します。
 guest01@bits1:~/koushu/equil> gsub equil.sh
- 自分のジョブが実行されているのを確認します。
 guest01@bits1:~/koushu/equil> qinfo
- ラックの中のどこで自分のジョブが実行されているのかを確認します。
 guest01@bits1:~/koushu/equil> xtnodestat
- 休憩(15分くらい)

本日の実習の流れ

equilディレクトリの、eq02.inを開きます guest01@bits1:~/koushu/equil> less eq02.in

 prunディレクトリに移動し、prun01.inを開きます guest01@bits1:~/koushu/equil> cd ../prun guest01@bits1:~/koushu/prun> less prun01.in

引き継ぐ

- そろそろ計算が終了していると思うので、計算が終了していることを確認してください。 guest01@bits1:~/koushu/prun> ginfo
- equilディレクトリに戻り、アウトプットファイルを開いてみて下さい。

guest01@bits1:~/koushu/equil> cd ../equil
guest01@bits1:~/koushu/equil> less eq01.out


```
*****
    MARBLE (Version 0.6.3)
    Program: marble.0.6.3-cray
    Host: nid00047
    PE: 64
    Threads: 8
    Date: Wed Oct 15 11:42:30 2014
    Control File: eq00.in
    Log File: eq01.out
** STEP 1. Read Control File
[input]
mdat file = ../molx/2hu4-molx.mdat
crd file = ../minim/2hu4-min.crd
[nonbond]
cutoff = 10.0
[ewald]
d qrid = 1.1
[PT control]
ensemble = NVT
method = rescaling
temperature = 10
gradual change T = 50000 300
[constraint]
rigid body = hydrogen
[restraint]
```

途中、シミュレーションの速度のベンチ マークが出力されます("Benchmark Time"を検索すると出てきます)

最後に、エネルギーの収束性(ドリフト) などの情報が出力されます。

トラジェクトリ(履歴)ファイルを開いてみて下さい。 guest01@bits1:~/koushu/equil> less 2hu4-eq01.trj

_	# TRAJECTORY BY MARBLE n atom: 40368, output: X	I Contraction of the second	
\mathbf{X}	47.682 38.747 14.057		_
	48.664 38.525 13.586	トラジェクトリーの書 =	.
	47.783 38.615 15.155		
	47.427 39.809 13.853		
	46.629 37.858 13.520	$\Delta tom 1 \oplus (XV7)$	
	45.668 38.303 12.893		
	46.791 36.552 13.766	$\Delta tom 2 \mathcal{O}(XYZ)$	
	47.564 36.239 14.312		—.
	45.817 35.538 13.395	$\Delta tom 3 \mathcal{O}(XY7)$	Flame 1
	45.249 35.894 12.549		
	46.456 34.211 12.988		
	47.019 33.786 13.846	•••	
	45.377 33.199 12.543		
	45.861 32.268 12.179		
	44.761 33.620 11.720	$\Lambda + \alpha = A \oplus (\lambda / \lambda / 7)$	
	44.703 32.938 13.387	Atom $IO(XYZ)$	
	47.438 34.458 11.825	$\Delta t_{0} = 0 \oplus (\lambda / \lambda / 7)$	
	47.868 33.490 11.490	Atom $200(XYZ)$	
	48.272 35.125 12.132	Atom $2 \oplus (Y/YZ)$	
	46.914 34.926 10.964	ALOIN $30J(XYZ)$	Flame 2
	44.849 35.363 14.557		
	45.229 35.303 15.724		
	43.541 35.359 14.259		
	43.233 35.337 13.311		•
	42.493 35.358 15.255		
	42.768 36.091 15.999		
	41.127 35.824 14.674		
	40.899 35.203 13.782		
	40.339 35.662 15.440		
	41.054 37.318 14.283		
	40.024 37.507 13.913		
	41.234 37.939 15.187		
	42.048 37.741 13.187	, I	
	43.009 37.763 13.627		
	42.015 50.909 12.509		
	41.700 33.114 12.373		
	40.702 33.113 12.033		
	42 815 39 <i>4</i> 10 11 571		
	42 493 40 188 10 961		
		i	

X

プロパティファイルを確認してみてください。 guest01@bits1:~/koushu/equil> less 2hu4-eq01.prop

۰.				
	#1TIME 2 0000000-01	2TEMPERATURE	3TOTAL_ENE	4POTENTIAL
	4.000000e-01	1.230840e+01	-1,480747e+05	-1.490856e+05
	6 000000e-01	1 346840e+01	-1 487270e+05	-1 498331e+05
	8.000000e-01	1.462840e+01	-1.491296e+05	-1.503310e+05
	1.000000e+00	1.578840e+01	-1.493340e+05	-1.506306e+05
	1.200000e+00	1.694840e+01	-1.495255e+05	-1.509174e+05
	1.400000e+00	1.810840e+01	-1.496453e+05	-1.511325e+05
	1.600000e+00	1.926840e+01	-1.497425e+05	-1.513249e+05
	1.800000e+00	2.042840e+01	-1.497443e+05	-1.514220e+05
	2.000000e+00	2.158840e+01	-1.497464e+05	-1.515193e+05
	2.200000e+00	2.274840e+01	-1.496928e+05	-1.515611e+05
	2.400000e+00	2.390840e+01	-1.496507e+05	-1.516142e+05
	2.600000e+00	2.506840e+01	-1.496001e+05	-1.516588e+05
	2.800000e+00	2.622840e+01	-1.494769e+05	-1.516309e+05
	3.000000e+00	2.738840e+01	-1.493925e+05	-1.516418e+05
	3.200000e+00	2.854840e+01	-1.492322e+05	-1.515767e+05
	3.400000e+00	2.970840e+01	-1.492030e+05	-1.516428e+05
	3.600000e+00	3.086840e+01	-1.489998e+05	-1.515349e+05
	3.800000e+00	3.202840e+01	-1.489048e+05	-1.515352e+05
	4.000000e+00	3.318840e+01	-1.487561e+05	-1.514817e+05
	4.200000e+00	3.434840e+01	-1.486335e+05	-1.514544e+05
	4.400000e+00	3.550840e+01	-1.485228e+05	-1.514389e+05
	4.600000e+00	3.666840e+01	-1.483610e+05	-1.513723e+05
	4.800000e+00	3.782840e+01	-1.482278e+05	-1.513344e+05
	5.000000e+00	3.898840e+01	-1.481203e+05	-1.513222e+05
	5.200000e+00	4.014840e+01	-1.479849e+05	-1.512821e+05
	5.400000e+00	4.130840e+01	-1.478119e+05	-1.512044e+05
	5.600000e+00	4.246840e+01	-1.477315e+05	-1.512192e+05
	5.800000e+00	4.362840e+01	-1.476004e+05	-1.511834e+05
	6.000000e+00	4.478840e+01	-1.473928e+05	-1.510710e+05
	6.200000e+00	4.594840e+01	-1.472416e+05	-1.510151e+05
	6.400000e+00	4.710840e+01	-1.471847e+05	-1.510535e+05
	6.600000e+00	4.826840e+01	-1.469816e+05	-1.509457e+05
	6.800000e+00	4.942840e+01	-1.468513e+05	-1.509106e+05
	7.000000e+00	5.058840e+01	-1.467106e+05	-1.508652e+05
	7.200000e+00	5.174840e+01	-1.464950e+05	-1.507449e+05
	7.400000e+00	5.290840e+01	-1.463592e+05	-1.507043e+05
	7.600000e+00	5.406840e+01	-1.462053e+05	-1.506457e+05
	7.800000e+00	5.522840e+01	-1.460149e+05	-1.505506e+05
	0 00000000000	E (20040-101	1 4505752105	1 5040044 105

出力される値

100ステップ(200 fs)ごとに出力 →インプットファイルで指定可 エネルギーや温度の履歴を確認してみます。
 guest01@bits1:~/koushu/equil> ./plot-equil.sh

(propファイルあるいはoutファイルの情報からグラフを作成できます)

ここまででスパコンの作業は終了です。スパコンをログアウトします。
 guest01@bits1:~/enshu/equil> exit

MARBLEによるノイラミニダーゼ・オセルタミビル(タミフル)複合体の 分子動力学シミュレーション

実習の流れ

(1)MARBLEによる分子動力学計算の実行

(2)計算結果の観察(VMDを用いて)

(2)ノイラミニダーゼ・オセルタミビル複合体の構造を眺める(VMDの使い方の練習)

【2:ノイラミニダーゼ・オセルタミビル複合体の構造を眺める(VMDの使い方の練習)】 まず、分子構造のViewerであるVMD (Visual Molecular Dynamics)を利用して、今回の 講習のターゲットであるノイラミニダーゼ・オセルタミビル(タミフル)複合体の構造を眺め ます。

スパコンからデータを持ってくる。

[ike@pc101 ~]\$ scp -r guest??@192.168.1.4:koushu ./

2. VMDでの観察

- VMDの設定をコピーします。
 [ike@pc101 ~]\$ cp /home/share/data/bioinfo/enshu/.vmdrc ~/
- VMDを起動します。

[ike@pc101 ~]\$ vmd koushu/minim/2hu4-min.pdb

次のような2つのウインドウが開きます。(下図、左Mainウィンドウ、右VMD表示ウィンドウ。)

VMD Mainウィンドウ: 全体のコントロールを行う

VMD表示ウインドウ: 分子構造を表示させます。 先ほど計算したMDのトラジェクトリーを読み込みます。

 VMD MainウィンドウのFileからNew Molecule を選ぶと、 下のようなウィンドウが現れる。

Molecule File Browser	(1)ここをクリックして、 〇: 2hu4-min.pdbを選ぶ。
Load files for: New Molecule Filename: Browse	(2)ここをクリックして、
Determine file type: Automatically Load	Koushu/equil/2hu4-eq01.trj を選ぶ。
First: Last: Stride:	
C Load in background C Load all at once	 (3)ここをクリックして、 AMBER Coordinates を選ぶ。

(4) 最後にLoadをクリックすると、MD計算のトラジェクトリーが取り込まれる。

(2)ノイラミニダーゼ・オセルタミビル複合体の構造を眺める(VMDの使い方の練習)

VMD表示ウインドウでは、分子の回転、平行移動、拡大縮小などができます。以下 に示すようなモードの変更時には、マウスカーソルの形状が変わります。

キー	説明
R	回転モード。クリックすると回転する。右クリックで画面に垂直な軸 回りに回転。
Т	平行移動モード。ドラッグすると平行移動する。右クリックで、画面 に垂直な軸に沿って移動する。
S	サイズ変更モード。ドラッグして左右に動かすと、分子のサイズが 変更される。ホイールを使ってもサイズ変更できる(ホイールは他 のモードでも使える)
=	最初の表示の向き、サイズにリセットする。分子の一部を選択した ときに、そこを画面の中心にもってくることができる。
С	原子をクリックして、回転の中心を設定する。
1	原子をクリックして、原子のラベルを表示する。
2	原子を2個クリックして、原子間の距離を表示する。
3	原子を3個クリックして、原子間の角度を表示する。
4	原子を4個クリックして、原子間のねじれ角を表示する。

表示されたラベルは、Bを押すと、ラベルは全部消えます。(これは標準のVMDの機能ではなく、~/.vmdrcという設定ファイルで追加した機能です。)

(2)ノイラミニダーゼ・オセルタミビル複合体の構造を眺める(VMDの使い方の練習)

タンパク質の表示の変更(Cartoon表示など) VMD Mainウインドウで、メニューのGraphics→Representations…を選択します。

Selected Molecule O: 2hu4-molx.pdb Create Rep Style Color Selection Lines Name all Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Name Drawing Method						
0: 2hu4-molx.pdb Create Rep Delete Rep Style Color Selection Lines Name all Draw style Selections Trajectory Periodic Coloring Method Mame Drawing Method						
Create Rep Delete Rep Style Color Selection Lines Name Selected Atoms ail Draw style Selections Trajectory Periodic Coloring Method Material Name Opaque						
Style Color Selection Lines Name all Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Material Drawing Method Opaque						
Lines Name all Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Material Name Opaque Image: Coloring Method						
Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Name Drawing Method						
Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Material Name Opaque Drawing Method Image: Coloring Method						
Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Name Opaque Drawing Method						
Selected Atoms all Draw style Selections Trajectory Periodic Coloring Method Name Opaque Drawing Method						
all Draw style Selections Trajectory Periodic Coloring Method Material Name Drawing Method						
Draw style Selections Trajectory Periodic Coloring Method Name Drawing Method						
Coloring Method Material Name Opaque Drawing Method (1)						
Drawing Method						
Drawing Method						
Lines Default						
♦ Apply Changes Automatically Apply						

中段のDrawing Methodから、表示方法を選びます。 NewCartoonがリボン表示。

Coloring Methodから、表示色を選びます。 Secondary structure とすれば、二次構造ごとに 異なる色の表示となります。

別の表示を追加するには、Create Repボタンを押します。そうする と、表示が追加されます。表示を消去したいときは、選択して Delete Repボタンを押します。

それぞれの表示では、原子を選択することができます。 Selected Atomsの欄に「resname G39」、 Drawing Methodを「Licorice」 Coloring Methodを「Name」(原子別色の意味)とすると、 左図のように、Cartoon表示のノイラミダーゼの中に、オセルタミビ ル(タミフル)が結合している様子が分かります。

巻き戻しボタンをクリックする。

● 次に、再生ボタンで再生します。

- 1. 蛋白質のRMSDをプロットしてみる。
- Extensions→Analysis→RMSD Trajectory Tool(左図)を出しRMSDボタンをクリックします。初期構造からのRMSDの平均値、最大値などが表示されます。
- Fileメニューから、Plot dataを選ぶと、グラフが表示されます(右図)。

(2)ノイラミニダーゼ・オセルタミビル複合体の構造を眺める(VMDの使い方の練習)

Graphical Representation	sentations					
Selected Molecule						
0: 2hu4-molx.pdt)	_				
Create Rep		Delete Rep				
Style	Color	Selection				
Licorice	Name	same residue				
HBonds	ColoriD 4	same residue				
•		Þ				
Selected Atoms						
same residue as	within 6.0 of	resname G39				
Draw style Selections Trajectory Periodic						
Coloring Metho	d	Material				
ColorID	▼ 4 ▼ Op	aque 🔽				
Drawing Metho	d					
HBonds	-	Default				
Distar	nce Cutoff 🐇					
	dle Cutoff #					
Line						
Apply Cha	inges Automa	tically Apply				

次は、オセルタミビル(タミフル)の周囲をクローズアップします。 NewCartoonをDelete Repして消します。

LicoriceのSelected Atomsを「within 6.0 of resname G39」と変更すると、タミフルの周囲6.0 Å 以内の原子も表示されます。

=キーで、画面の中心に持ってくることができます。

Create Repして、Drawing Methodを「HBonds」と すると、水素結合(塩橋も含む)が表示されます。デ フォルトの閾値では厳しいので、距離3.5 Å, 角度30 度に変更します。色をColorIDからYellowにすると 見やすくなります。これらの機能を使って、タミフル 周辺の原子の相互作用の様子を眺めることができ ます。

(3)計算結果の観察(VMDを用いて)

結合サイトの周辺をクローズアップしてみます。

- O X Graphical Representations Graphics→Representations...で、NewCartoonをDelete Repで消します。 Selected Molecule 0: 2hu4-molx.pdb ▼ Licoriceの選択原子を Create Rep Delete Rep "same residue as within 6.0 of resname G39" とします(下図)。 Style Color Selection Licorice Name same residue (残基内のどれかの原子が6 A以内の残基を表示) HBonds ColorID 4 same residue 「=」キーを押し、クローズアップにして、再生してみて下さい。 Same residue as within 6.0 of resname G39 Update Selection Every Frameのボタンを選択すると、 Draw style Selections Trajectory Periodic 各フレームごとに上の条件の原子を表示します Update Selection Every Frame Update Color Every Frame Color Scale Data Range LicoriceのTrajectoryタブで、Trajectory Smoothing Window Sizeを 0.00 Set Autoscale 0.00 増やして再生するとよりスムーズなムービーになります。 Draw Multiple Frames: (now, b:e, b:s:e) now Trajectory Smoothing Window Size: 4 4 0 + +

(3)計算結果の観察(VMDを用いて)

- 3. 結合原子の距離を測ってみる。
- LicoriceのTrajectoryタブのTrajectory Smoothing Window Sizeを0に戻す。
- 巻き戻しをする。
- 「2」キーを押して、2原子をピックすると2原子間の距離が表示されます(左図)。
- VMD Main ウィンドウのバーを動かすと、距離が刻々と変わります。
- 距離のグラフを出力してみます。
 - ➤ VMD Main ウィンドウのGraphics→Labelsを選ぶ(真ん中の図)。
 - ▶ プルダウンメニューからBondsを選びます。
 - ▶ さきほどピックした原子ペアを選びます。
 - ▶ Graphタブから、Graph…ボタンをクリックすると、その距離のグラフが出力されます(右図)。
- 距離と同様に、角度、二面角なども同じように表示したり経時変化を示すことができます。

VMD 1.9.1 OpenGL Display		
	🗈 Labels	
WWWWW YSCAHZ2	Bonds Show Hide Delete	rd MubRet Els
	LYS68:HZ2 TIP35510:H2	275 0
P ^{1235510H2}		· ····································
	Picked Atom Graph Properties Global Properties	month and and
	Molecule: 0: 2hu4-min.pdb	man we have a lim
	XYZ: 36.028 58.359 48.958	225- 225-
	ResName: LYS Chain: A ResID: 68 SeqName:	- Why Let
	Name: HZ2 Index: 1046	075-
	Type: HZ2 Value: 0.000	125
		0 50 100 150 200 255 Frame ∠]
2		

VMDを終了します

- Main ウィンドウの→File...で、Quitを選択します。
- ターミナルを終了します。
 [ike@pc101 ~]\$ exit
- データの持ち帰りたい人は、お知らせください。

以上で終了ですお疲れ様でした。

http://www.tsurumi.yokohama-cu.ac.jp/bioinfo/marble/