

「CafeMol」粗視化分子モデル 計算ソフト講習会

検崎博生 理化学研究所情報基盤センター

CafeMol (www.cafemol.org)

- Features are;
 - Various CG models
 - -protein/DNA/RNA
 - multiple basin model
 - accurate CG model
 - Simulating protein-at-work- "switching"
- Under development
 lipid
- Developer

検崎博生、古賀信康、藤原慎司、堀直 人、金田亮、李 文飛、岡崎圭一、姚 新 秋、寺川剛、伊藤真志保、高田彰二 京都大学高田研究室

CafeMol 2.1 (2013/7) source & manual released

			_
(🥹 🛛 🖉	CafeMol - Mozilla Firefox	- 0	X
- ファイル(<u>F</u>) 編集(<u>E</u>) 表示(<u>V</u>) 履歴(<u>S</u>) ブック	マーク(<u>B</u>) ツール(<u>T</u>) ヘルプ(<u>H</u>)		- 1. 1. 1.
🖕 🗼 🗸 🍪 🐼 🔂 🖬 http://www	v.cafemol.org/		0
📷 よく見るページ~ 💈 Google 🍙 journal 📕 高	阳研究室 💿 FrontPage - Takada 🔅 CafeMol	۶Â	-9

CafeMoI

Menu News (Top) Download Documents Development Acknowledgement Link

Takada Lab

CafeMol is a general-purpose coarse-grained(CG) biomolecular modeling and simulation software.It can simulate proteins,nucleic asids,lipids and their mixture with various CG models.

<u>کې</u>

CafeMol beta-version release (2009/08/10)

We are glad to announce the release of CafeMol beta version. At this stage, only the parts for protein simulations are available, and all the details are still upon rapid change.The manual is half- written. Download

CafeMol 0.2.0

Documents Manual 0.2.0

Copyright (c) Department of Biophysics, Graduate School of Science, Kyoto University

Overview of CafeMol

- General-purpose coarse-grained (CG) biomolecular modeling and simulation software
 - Protein: 1 bead / 1 amino acid
 - Nucleic acid:
 - 3 beads (sugar, base, phosphate) / nucleotide

Lipid: ~3 beads / lipid

- Written by FORTRAN90 with MPI and Open MP
- Large-scale simulation

– ~ "millisecond" event by K-computer

• Version 1.0 is released (only protein) (2010/12/27)

- Version 2.0 (protein, DNA, RNA) (2012/5/31)

– Version 2.1 (protein, DNA, RNA) (2013/7/1)

- 1. Molecular dynamics simulation
- 2. Coarse-grained models
- 3. Simulation methods & Implementation
- 4. Selected applications

- 1. Molecular dynamics simulation
- 2. Coarse-grained models
- 3. Simulation methods & Implementation
- 4. Selected applications

Biomolecular simulations

- Molecular orbital(MO) method
 - quantum mechanics
 - chemical reaction
- Molecular dynamics(MD) method

– classical mechanics

- conformational change of biomolecules
- Continuum method
 - elastic model
 - muscle contraction
 - fluid dynamics
 - blood flow

Molecular dynamics

- Calculate molecular movement
 - Classical mechanics

- Numerically integrate Newton's equation of motion
- <u>m(mass) x a(acceleration) = F(force)</u>
- interaction parameters are derived from MO
- Interaction
 - bond length, bond angle, dihedral angle
 - van der Waals interaction
 - electrostatic interaction

dihedral angle

bond length

bond angle

Constant temperature dynamics

- Berendsen thermostat
 - rescale velocity to control temperature
 - not canonical distribution
- Nose-Hoover thermostat
 - rescale velocity using artificial particles
 - canonical distribution
- Langevin dynamics
 - random force and viscosity
 - fluctuation-dissipation theorem
 - canonical distribution

Generalized ensemble methods

- replica1 Generalized ensemble methods
 - replica2 accelerate conformational sampling replica3
 - only obtain equilibrium variables
- Replica exchange molecular dynamics(REMD)
 - simulate many copies at different temperatures
 - exchange configuration at proper probability
 - extension to interaction parameters
- Multicanonical method
 - sample "flat histogram" on energy
 - iterative learning of "the density of states"

multicanonical ensemble

Molecular dynamics simulation Coarse-grained models Simulation methods & Implementation Selected applications

Why coarse-grained model ?

Reducing the number of particles to 1/100

- 1 amino acid residue \rightarrow 1 particle (C_aatom)
- No water molecule

(included in potential energy)

Protein folding and functional conformational change

10^6 times speed up

- Reducing the number of particles
- Enlarge time step
- Low friction

AA: 100PC 1week CG: 1PC 1minute!!

Models and energy functions

1 beads / 1 amino acid

- A. Go-like model
- B. Atomic interaction based CG(AICG) model
- C. Flexible local potential(FLP) model
- D. AICG2+ model
- E. Multiple basin model
- F. DNA/RNA model
- G. Elastic network model
- H. Electrostatic and hydrophobic interactions
- I. Explicit and implicit ligands

Go-like model

C. Clementi, H. Nymeyer, and J.N. Onuchic, J. Mol. Biol. (2000)

Based on the energy landscape theory
Structure based

$$V_{protein} = V_{local} + V_{go} + V_{ex}$$

$$(0 \text{ means native state})$$

$$V_{local} = K_b \sum_{i} \left(r_{i,i+1} - r_{0i,i+1}\right)^2 + K_\theta \sum_{i} \left(\theta_i - \theta_{0i}\right)^2$$

$$+ K_{\phi}^1 \sum_{i} \left(1 - \cos(\phi_i - \phi_{0i})\right) + K_{\phi}^3 \sum_{i} \left(1 - \cos 3(\phi_i - \phi_{0i})\right)$$

$$K_{go} = \varepsilon_{go} \sum_{i,j}^{nattive} \left[5 \left(\frac{r_{0ij}}{r_{ij}}\right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}}\right)^{10}\right]$$

$$V_{ex} = \varepsilon_{ex} \sum_{i,j}^{nonnative} \left(\frac{\sigma}{r_{ij}}\right)^{12}$$

$$K_{go} = \varepsilon_{ex} \sum_{i,j}^{nonnative} \left(\frac{\sigma}{r_{ij}}\right)^{12}$$

Atomic interaction based CG (AICG) model

W. Li, P. Wolynes, S. Takada, PNAS (2011)

$$V = \sum_{i} k_{b}^{i} (r^{i} - r_{0}^{i})^{2} + \sum_{i} k_{a}^{i} (\theta^{i} - \theta_{0}^{i})^{2} + \sum_{i} \{\varepsilon_{\phi,1}^{i} [1 - \cos(\phi^{i} - \phi_{0}^{i})] + \varepsilon_{\phi,3}^{i} [1 - \cos 3(\phi^{i} - \phi_{0}^{i})]\} + \sum_{i>j-3}^{native} \varepsilon^{ij} [5(r_{0}^{ij} / r^{ij})^{12} - 6(r_{0}^{ij} / r^{ij})^{10}] + \sum_{i>j-3}^{non-native} \varepsilon(C / r^{ij})^{12}$$

Wenfei Li) enerav

1) Contact energy ε_{ij} from pairwise all-atom (AA) energy $E^{IJ}(R_{IJ}) = \sum_{i \in I} \sum_{j \in J} u_{AA}(r_{ij}) \qquad u_{AA}(r) = V(r) + \Delta G^{GB}_{pol}(r) + \Delta G^{SA}(r)$

2) Coefficients fitted by AA-derived fluctuation (23 proteins)

a.a.

Test for fluctuation, structural change, & folding

Atomic

Flexible local potential(FLP) model

T. Terakawa, and S. Takada, Biophys. J. (2011)

Probability distributions to CG potential for flexible local potentials

Boltzmann inversion; prob. to pot.

$$V_a = -k_B T \frac{\ln P_a(\boldsymbol{\alpha})}{\sin \boldsymbol{\alpha}} \qquad V_d = -k_B T \ln P_d(\boldsymbol{\eta})$$

AICG2+ model

W. Li, T. Terakawa, W. Wang, S. Takada, PNAS (2012)

improved AICG model + FLP model

Multiple-basin model for proteins

K. Okazaki, N. Koga, S. Takada, J.N. Onuchic, and P.G. Wolynes, PNAS (2006)

CG DNA model

T.A. Knotts IV, N.Rathore, D.C. Shwartz, and J.J. Pablo, J. Chem. Phys. (2007)

- Three interactions sites
 - Phosphate
 - •Sugar
 - •Base
- •Reproduce various DNA behavior
 - Salt-dependent melting
 Bubble formation
 - Mechanical properties

3SPN.1 force field

CafeMol

E.J. Sambrisiki, D.C. Schwartz, and J.J. de Pablo, Knotts, Biophys. J. (2009)

$$\begin{split} \hline V_{dna} &= V_{local} + V_{stack} + V_{bp} + V_{ex} + V_{qq} + V_{solv} \\ V_{local} &= K_{b1} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{2} + K_{b2} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{4} \\ &+ K_{\theta} \sum_{i} \left(\theta_{i} - \theta_{0i} \right)^{2} + K_{\phi} \sum_{i} \left(1 - \cos(\phi_{i} - \phi_{0i}) \right) \\ V_{stack} &= 4\varepsilon_{1} \sum_{i,j}^{N_{w}} \left[\left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{6} \right] \\ V_{stack} &= 4\varepsilon_{1} \sum_{i,j}^{N_{w}} \left[\left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}} \right)^{10} \right] \\ V_{ex} &= 4\varepsilon_{1} \sum_{i,j}^{N_{w}} \left[\left(\frac{\sigma_{0}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0}}{r_{ij}} \right)^{6} \right] \\ + \varepsilon_{1} \left(if \ r_{ij} < d_{cut} \right), \\ &= 0 \left(if \ r_{ij} > d_{cut} \right) \end{split}$$

3SPN.1 force field (electrostatic and solvation interaction)

$$V_{qq} = \sum_{i,j}^{N} \left(\frac{q_{i}q_{j}}{4\pi\varepsilon_{0}\varepsilon(T,C)r_{ij}} \right) e^{-r_{ij}/\kappa_{D}} \qquad \text{Debye-Huckel theory} \qquad \text{Debye length}$$

$$\varepsilon(T,C) = \varepsilon(T)a(C) \quad \leftarrow \quad \varepsilon=78 \qquad \kappa_{D} = \left(\frac{\varepsilon_{0}\varepsilon RT}{2N_{A}^{2}e_{q}^{2}I} \right)$$

$$\varepsilon(T) = 249.4 - 0.788T/K + 7.20 \times 10^{-4}(T/k)^{2} \qquad \kappa_{D} = \left(\frac{\varepsilon_{0}\varepsilon RT}{2N_{A}^{2}e_{q}^{2}I} \right)$$

$$a(C) = 1.000 - 0.2551C/M + 5.151 \times 10^{-2}(C/M)^{2} - 6.889 \times 10^{-3}(C/M)^{3}$$

$$V_{solv} = \sum_{i < j}^{N_{solv}} \varepsilon_s \left[1 - e^{-a(r_{ij} - r_s)} \right]^2 - \varepsilon_s$$

$$\varepsilon_s = \varepsilon_N A_I$$

$$e_N = e_0 \left(1 - \left[1.40418 - 0.268231 N_{nt} \right]^{-1} \right)$$

$$A_I = 0.474876 \left(1 + \left\{ 0.148378 + 10.9553 \left[Na^+ \right] \right\}^{-1} \right)$$

$$\alpha^{-1} = 5.333A$$

 $r_s = 13.38A$
 $\epsilon_0 = 0.504982\epsilon$

CG RNA model

N. Hori, and S. Takada, JCTC (2012)

Phosphate (phosphorus atom)
Sugar (center of ribose ring)
Base (pyrimidine: N1 atom) (purine: N3 atom)

CG RNA model (local)

CG RNA model (nonlocal)

Elastic network model

Electrostatic and hydrophobic interactions

Debye-Huckel form for electrostatics

$$V_{\text{ele}} = \sum_{i < j}^{N} \frac{q_i q_j}{4\pi\epsilon_0 \epsilon_k r_{ij}} e^{-r_{ij}/\kappa_D}$$

$$\kappa_{D} = \left(\frac{\varepsilon_{0}\varepsilon RT}{2N_{A}^{2}e_{q}^{2}I}\right)$$

HP interactions analogous to ASA

$$V_{\rm HP} = -c_{\rm HP} \sum_{i \in \rm HP} \epsilon_{\rm HP,A(i)} S_{\rm HP}(\rho_i)$$

Count coordination number for each hydrophobic particle

Explicit and Implicit ligands

Explicit ligand: as a rigid molecule

Implicit ligand: MD-MC scheme with ligand-mediated contact

- 1. Molecular dynamics simulation
- 2. Coarse-grained models
- 3. Simulation methods & Implementation
- 4. Selected applications

Simulation method

- Dynamics
 - Newtonian dynamics with Berendsen thermostat
 - Langevin dynamics
 - Multi-Particle Collision dynamics (MPC)
- Time integration
 - velocity Verlet algorithm
- Run mode
 - Constant temperature simulation
 - Simulated annealing
 - Auto-search of Tf
 - Replica exchange method
 - Potential "switching"
- Useful option
 - anchor, bridge, pulling, fix, box

Units in CafeMol

- The length unit is A - $1A = 10^{-10}m$
- The energy unit is kcal/mol
 - 1kcal/mol = 6.9478pNnm = 0.04337eV
 - $-300k_BT = 0.6kcal/mol$
- The mass unit is cafemol-mass-unit (cafemu)
 - each amino acid has the mass of 10cafemu
 - 1cafemu = 13.7amu = 2.275x10⁻²⁶kg
- The unit of charge is elementary-electric charge (e)
- The unit time is café time
 - 1cafe time= 1.809x10⁻¹³s ~ 200fs
 - intrinsic dynamics is accelerated by coarse-graining the energy landscape

Input and output files

- Input files
 - Input file(.inp)
 - PDB file(.pdb)
 - native-info file(.ninfo)
 - parameter file(.para)
 - AICG files

red: essential files green: frequently used black: optional files

- Output files
 - data file(.data)
 - time-series file(.ts)
 - native-info file(.ninfo)
 - coordinate and velocity
 - PDB format(.pdb)
 - CARD format(.crd, .vdcd)
 - trajectory
 - PDB format(.movie)
 - DCD coordinate(.dcd, .vdcd)
 - PSF file(.psf)
 - restart file(.rst)
 - replica information file(.rep)

Example of input file (folding simulation of src SH3)

interaction input/output <<<< filenames path = ./data<<<< energy_function filename = sh3LOCAL(1) L_GO OUTPUT psf pdb dcd rst Go model Input NLOCAL(1/1) GO EXV path_pdb = ./pdb block >>>> path_ini = ./pdb <<<< md_information path_natinfo = ./ninfo $n_{step_sim} = 1$ simulation type >>>> $n_{tstep}(1) = 300000$ <<<< job_cntl $tstep_size = 0.2$ i run mode = 2Const T MD n_step_save = 100 i_simulate_type = 1 *Langevin* $n_{step_neighbor} = 100$ i_initial_state = 1 From random tempk = 300.0>>>> $n_seed = 1$ <<<< unit_and_state >>>> $i_seq_read_style = 1$ i_go_native_read_style = 1 detail/option protein 1SRL.pdb sequence/structure >>>>

Native-info

all-in-one style

<<<< native_info_sim1 NINFO(all/all) f1atp_all.ninfo >>>>

```
one-by-one style
```

```
<<<< native_info_sim1
NINFO(1/1) 1 Intra-mol 1
...
```

```
NINFO(3/6) 13 Inter-mol 3/6
1= f1atp_alpha_E.ninfo
```

```
13= f1atp_alphDP_betaDP.ninfo
>>>>
```

native-info file (alpha_E subunit)

bond 1 1 1 1 2 1 2 3.8132 1.0000 1.0000 100.0000	
 angl 1 1 1 1 2 3 1 2 3 93.2170 1.0000 1.0000 20.0000	
 dihd 1 1 1 1 2 3 4 1 2 3 4 67.0855 1.0000 1.0000 1.0000	
 contact 1 1 1 1 5 1 5 5.9973 1.0000 1 0.3000 	
pair ij nat-distance coefficient contact interacti	on

Useful option1

redefine parameters

dfcontact = 4.5 definition of native contact(default 6.5A)

cdist_rep12 = 6.0reference distance in excluded interaction(default 4.0A)rneighbor_dist = 20.0truncation distance for neighbor list(default 24.0A)fric_const = 0.02friction constant(default 0.25)

delete interaction
 DEL_LGO(mp_{ini}-mp_{las})
 DEL_GO(mp_{ini,i}-mp_{las,i}/mp_{ini,j}-mp_{las,j})

■ box: fix some particles or units xbox = boxsize_x $V_{box} = 0$ $(d > 3\sigma)$, ybox = boxsize_y zbox = boxsize_z $= k_{box} \left(\frac{\sigma}{d}\right)^{12}$ $(0.5\sigma < d < 3\sigma)$, boxsigma = sigma $= k_{box} \left(\frac{\sigma}{0.5\sigma}\right)^{12} (1+12\frac{0.5\sigma-d}{0.5\sigma}) (d < 0.5\sigma)$

Useful option2

a anchor: particle i constrain to some position ANCH i k_i l₀ x₀ y₀ z₀ V_{anchor} = k_i (r_{i0} - l₀)² (r_{i0} > l₀), = 0 (r_{i0} < l₀) **b** bridge: bind I and j particles by a harmonic spring BRIDGE i j k_{ij} l₀ V_{bridge} = k_{ij} (r_{ij} - l₀)² (r_{ij} > l₀), = 0 (r_{ij} < l₀)

Image: pulling: particle I is pulled by constant force or constant velocity
PULL_CF i $f_x f_y f_z$ PULL_CV i $k_d v_x v_y v_z x_0 y_0 z_0$

fix: fix some particles or units
 FIX_UNIT(unit_{ini}-unit_{las})
 FIX_MP(mp_{ini}-mp_{las})

CafeMol code

CafeMol code parallization

- Time integral(MPI+OpenMP)
 - neighboring list
 - each node calculates distances between assigned pairs and makes neighboring list
 - force, energy
 - each node calculates force or energy including their neighboring list
 - these calculations are parallelized by OpenMP
- Temperature/Hamiltonian REMD(MPI)

 replica_1, replica_2,, replica_n

- 1. Molecular dynamics simulation
- 2. Coarse-grained models
- 3. Simulation methods & Implementation
- 4. Selected applications

Folding simulation of src SH3 domain

N. Koga, and S. Takada, J. Mol. Biol. (2001)

Native fluctuation by Go-like model

Folding temperature of src SH3 (Auto-search of Tf)

Bi-section method

<<<< job_cntl i_run_mode = 4 i_simulate_type = 1 i_initial_state = 1 >>>> <<<< searching_tf tempk_upper = 500.0 tempk_lower = 100.0 >>>>

tf_out tempk n_state d_state p_trans tf out 300.000 995 5 ***** tf out tempk n state d state p trans tf out 400.000 1 1000 tf_out tempk n_state d_state p_trans 166 835 tf out 350.000 78 ***** tf_out tempk n_state d_state p_trans tf out 325.000 953 48 19 ****** ****** tf_out tempk n_state d_state p_trans tf out 341.406 638 363 98 ************

Folding temperature of some proteins

Protein	Number of amino acid	Folding temperature(K)
albumin binding domain	53	380.4
src SH3 domain	56	342.9
protein G	56	338.2
α -spectrin SH3 domain	57	360.1
Sso7d	64	332.0
protein L	78	374.2
lm9	86	382.0
cytochrom B562	106	352.2

"Switching" simulation

. . .

. . .

dihd 1 1 1 1 2 3 4 1 2 3 4 67.0855 1.0000 1.0000 1.0000

contact 1 1 1 1 5 1 5 5.9973 1.0000 1 0.3000

pair ij nat-distance coefficient contact interaction

Rotation mechanism of F₁-ATPase by switching Go model

N. Koga, and S. Takada, PNAS (2006)

Conformational change using 3-state multi-basin model

X. Yao, H. Kenzaki, S. Murakami, and S. Takada, Nature Comm. (2010)

Multidrug transporter AcrB

- •Largely responsible for multidrug resistance
- •Asymmetric homo-trimer structure

Suggesting mechanism of drug exportation and functional rotation!

Sliding movement of KIF1A

R. Kanada, T. Kuwata, H.Kenzaki, S.Takada, PLOS Comput. Biol. (2013)

phase: multiple-basin (T, D)
 phase: go(D)
 phase: multiple-basin(D, phi)
 phase: go(phi)
 phase: go(T)

KIF1A:blue tubulin:green cargo:yellow

CG DNA simulation

- 30 bp DNA duplex
- Langevin dynamics (300K)
- [Na⁺] = 69mM
- cutoff length 20κ_D(Debye length)

Diffusional search of p53 on DNA

T. Terakawa, H. Kenzaki, and S. Takada, JACS, (2012)

- •Tumor suppressor
- Transcription factor
 - 1. Nonspecific diffusional search on DNA
 - 2. Specific binding

protein:AICG and FLP model DNA:CG DNA model protein-DNA: excluded and electrostatic interaction

Simulation of nucleosome

Electrostatic interaction
 + Go potential

<<<< energy_function LOCAL(1-2) L_BDNA LOCAL(3-10) L_GO NLOCAL(1-2/1-2) ELE DNA NLOCAL(1-2/3-10) GO EXV ELE NLOCAL(3-10/3-10) GO EXV >>>> <<<< electrostatic $cutoff_ele = 5.0$ ionic_strength = 0.2 diele_water = 78.0 >>>>

$$\begin{aligned} \epsilon_{\text{go}} \ ^{\text{pro-dna}} &= 0.8 \epsilon_{\text{go}} \ ^{\text{pro}} \\ \text{[Na^+]} &= 200 \text{mM} \end{aligned}$$

ε_{go} ^{pro-dna}:coefficient of protein-DNA Go potential

H. Kenzaki, et al unpublished data

Acknowledgement

CafeMol development has been supported by Research and Development of the Next-Generation Integrated Simulation of Living Matter, a part of the Development and Use of the Next-Generation Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology.