

#### タンパク質間相互作用ネットワークの推定と その応用に関する研究

#### Large-scale protein-protein interaction network prediction by an exhaustive rigid docking system MEGADOCK

松崎 由理

Yuri Matsuzaki

東京工業大学 情報生命博士教育院

matsuzaki@acls.titech.ac.jp



秋山 泰 (東エ大)

Yutaka Akiyama (Tokyo Institute of Technology)

■参加者

松崎由理, 石田貴士, 大上雅史(東工大), 内古閑伸之(中央大) Yuri Matsuzaki, Takashi Ishida, Masahito Ohue (Tokyo Institute of Technology), Nobuyuki Uchikoga (Chuo University)

# The number of available protein tertiary structures is growing rapidly





RCSB PDB (as of 2014-09-22)

## What we do: Protein-protein interaction (PPI) network prediction using proteins tertiary structure data



Target: Millions of combinations of proteins Strategy: Exhaustive rigid docking among target proteins

- Feasible assuming massively parallel computing environments
- Prediction of complex structures can also be provided



## MEGADOCK system: PPI network prediction by an ultra-fast rigid-docking tool



#### MEGADOCK

- Rigid-docking software designed for exhaustive docking studies
- Suitable for running on supercomputers
  - K, SCLS, TSUBAME2.5 (CPU/GPU version)
- Open-source

http://www.bi.cs.titech.ac.jp/megadock/ Ohue, *et al., Bioinformatics,* accepted.



## **Rigid Docking**

• Evaluates docking scores mainly based on the complementarity of protein tertiary structure



Katchalski-Katzir E, et al. PNAS, 1992.

## A compact score function of MEGADOCK

Compress three terms into one complex number:

- Shape complementarity
- Hydrophobic interaction
- **Electrostatic interaction**

1+H|2+H|

 $+i\phi$ 

2+*H* +*i*φ

3+H +iφ

3+H +iφ

3+H +iφ

3+H +iφ

2+H $+i\phi$ 

 $+i\bar{\phi}$ 

-45

-45

-45

-45

-45

-45

3+Η +iφ

-45

-45

-45

-45

-45

3+H

 $+i\overline{\phi}$ 

-45

-45

-45

-45

-45

-45 ( -45 )

3+H 2+H $+i\phi$   $+i\phi$ 

5+H  $+i\phi$   $+i\phi$ 

5+H 2+H $+i\phi$   $+i\phi$ 

-45

-45

-45

-45

-45

-45

-45

-45

2+H +iφ

2+H +iφ

1+H

 $+i\overline{\phi}$ 

1+H

+i $\phi$ 

2+*H* +*i*φ

2+*H* +*i*φ

1+H $+i\phi$ 

 $\boldsymbol{S}(\alpha,\beta,\gamma) = \Re \left[ \sum_{l=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \boldsymbol{R}(l,m,n) \boldsymbol{L}(l+\alpha,m+\beta,n+\gamma) \right]$  $\boldsymbol{R}(l,m,n) = \boldsymbol{G}_{\boldsymbol{R}}(l,m,n) + \boldsymbol{w}_{\boldsymbol{h}}H(l,m,n) + \boldsymbol{i}\phi(l,m,n)$  $\boldsymbol{L}(l,m,n) = \boldsymbol{G_L}(l,m,n) + \boldsymbol{iw_eq}(l,m,n)$  $\begin{array}{|c|}\hline 1+H\\ +i\phi\end{array} \hspace{-0.5mm} \boldsymbol{S}(\alpha,\beta,\gamma) = \Re \left[ \operatorname{IFT} \left[ \operatorname{DFT} \left[ \boldsymbol{R}(l,m,n) \right]^* \operatorname{DFT} \left[ \boldsymbol{L}(l,m,n) \right] \right] \right]$ Convolution can be

'1+ia**'**1+ia

1+ia**]**1+ia

1+iq1+iq1+iq1+iq1+iq1+iq

1+ia11+ia11+ia11+ia11+ia

calculated fast by FFT (Katchalski-Katzir model)

Ligand protein

Ohue et al., Lecture Note in Bioinformatics, 2012.

Receptor protein

## Implementation by hybrid parallelization



Matsuzaki, et al., Source Code Biol Med, 2013.



## Scalability on K computer



• Less but sufficient scalability (strong scaling 0.91) was observed with 82,944 nodes.

Matsuzaki, *et al.*, *Source Code Biol Med*, 2013. <sup>9</sup>

### Prediction method 1: clustering based

- Get 2,000 high scoring models by docking of each protein pair
- Conduct clustering based on structure similarity
- Define the highest docking score (normalized) of the data included in the cluster C<sub>i</sub>: s<sub>i</sub>
- Define cluster population (normalized) :  $m_i$
- Select populated clusters C' with threshold  $m^*$  of population of the cluster  $C' = \{C_i \mid m_i > m^*\}$
- Decide PPI score E
- Evaluate each pair of protein combination as interacting if *E* is higher then the threshold *E*\*



Matsuzaki, et al., J Bioinform Comput Biol, 2009.

## Prediction method 2: reranking based



Ohue, et al., Protein Pept Lett, in press.

## PPI prediction using general benchmark data







**Crystal structure** 

Binding partner prediction from 44x44=1936 dockings and post-docking (Diagonal: interacting pairs)

#### F-measure : 0.42

F-measure =  $\frac{2 \cdot \text{TP}}{(\text{TP} + \text{FP}) + (\text{TP} + \text{FN})}$ 

Matsuzaki, *et al., J Bioinform Comput Biol*, 2009. Ohue, *et al., Protein Pept Lett, 2014*. PPI prediction by MEGADOCK achieved better than random performance on general benchmark dataset (monomer pair from protein-protein docking benchmark 2.0, Mintseris *et al, Proteins,* 2005.)

## Application to bacterial chemotaxis pathway



Matsuzaki, et al., J Bioinform Comput Biol, 2009.

### Application to human apoptosis pathway



#### F-measure : 0.28

PPI prediction by docking without any other knowledge showed comparable results to templatebased search of interaction partners (F-measure 0.30, Ozbabacan *et al., J Struct Biol,* 2012).

| Prediction | Interacting | No<br>Interaction |
|------------|-------------|-------------------|
| Positive   | 88          | 364               |
| Negative   | 96          | 1105              |

Ohue, et al., BMC Proc., 2013.

## Application to non-small cell lung cancer pathway

- Completed large-scale exhaustive docking
  - 497 structures, all-to-all docking = 247,009 structure pairs
- Achieved high PPI prediction performance
  - Precision 0.29
  - Recall 0.47

PPI prediction of about 250 thousand structure pairs showed comparable performance to the application to bacterial chemotaxis (10 thousand pairs).



## Application to lung-cancer drug related proteins



## PPI prediction result



- Using threshold of E\* = 13.0
  - 3873 structure pairs
  - 175 protein pairs
  - Evaluated the prediction by 6 public databases (MIPS, DIP, IntAct, HPRD, BioGRID, MINT)
  - Undefined positives

#### <u>35 pairs</u>

- Looked up these pairs on cancer gene regulatory networks derived by correlation of transcription data
  - Selected highly correlated pairs
  - Obtained 11 pairs

### Evaluation of 7 potential PPIs by SPR

- 7 pairs were sent to assay using surface plasmon resonance (SPR) spectroscopy
  - Reference Biolabs Inc.,
    Korea
  - Device: Reichert SR7500DC
- Binding affinities were measured except from 1 pair



Reference Biolobs Inc.

### [Ongoing] Virus-human PPI prediction



## References

#### (Papers contributed by MEGADOCK group)

- Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y, MEGADOCK 4.0: an ultra—high-performance protein—protein docking software for heterogeneous supercomputers., *Bioinformatics*, accepted.
- Matsuzaki Y, Ohue M, Uchikoga N, Akiyama Y, Protein-protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis., *Protein and Peptide Letters*, **21**:790-798, 2014.
- Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y, MEGADOCK: An all-to-all protein-protein interaction prediction system using tertiary structure data., *Protein and Peptide Letters*, **21**:766-778, 2014.
- Matsuzaki Y, Uchikoga N, Ohue M, Shimoda T, Sato T, Ishida T, Akiyama Y, MEGADOCK3.0: A high-performance proteinprotein interaction prediction software using hybrid parallel computing for petascale supercomputing environments., *Source Code for Biology and Medicine*, **8**:18, 2013.
- Uchikoga N, Matsuzaki Y, Ohue M, Hirokawa T, Akiyama Y, Improved post-processing of protein-protein docking data using profiles of interaction fingerprints., *PLoS ONE*, *8*:e69365, 2013.
- Ohue M, Matsuzaki Y, Shimoda T, Ishida T, Akiyama Y, Highly precise protein-protein interaction prediction based on consensus between template-based and *de novo* docking methods., *BMC Proceedings*, **7**(Suppl. 7):S6, 2013.
- Ohue M, Matsuzaki Y, Ishida T, Akiyama Y, Improvement of the protein-protein docking prediction by introducing a simple hydrophobic interaction model: an application to interaction pathway analysis., *Lecture Note in Bioinformatics*, **7632**:178-187, 2012.
- Ohue M, Matsuzaki Y, Akiyama Y, Docking-calculation-based method for predicting protein-RNA interactions., *Genome Informatics*, **25**:25-39, 2011.
- Fleishman SJ, et al., Community-wide assessment of protein-interface modeling suggests improvements to design methodology., Journal of Molecular Biology, **414**:289-302, 2011.
- Uchikoga N, Hirokawa T, Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes., *BMC Bioinformatics*, **11**:236, 2010.
- Ohue M, Matsuzaki Y, Matsuzaki Y, Sato T, Akiyama Y, MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data and its application to systems biology study., *IPSJ Transactions on Mathematical Modeling and Its Applications*, **3**: 91-106, 2010.
- Matsuzaki Y, Matsuzaki Y, Sato T, Akiyama Y, *In silico* screening of protein-protein interactions with all-to-all rigid docking and clustering: an application to pathway analysis., *Journal of Bioinformatics and Computational Biology*, **7**:991-1012, 2009.