

RICSソルバの主な入出力データ

RICSソルバは計算条件として、必要に応じて以下のデータを入力する(抜粋)

	名称	データ形式	備考
入力	計算条件ファイル (Configuration File)	XML	計算領域サイズ、時間ステップ、媒質毎の代謝、媒質、物質等の定 義。 物質の拡散係数の指定。出力の定義。etc
	EML, SBML	EML, SBML	反応計算条件ファイル
	媒質の体積率、面積率 データ	SVX	バイナリデータ。各媒質(オルガネラ等)毎に指定する。
	物質の初期濃度(局在)	SPH	初期状態として、物質の濃度が分布を持つ場合に指定。 媒質で均一な場合は、計算条件ファイルで指定が可能。
	膜の局在	SPH	チャネル等の膜機能について、局在を指定したい場合にSPHを使用する。 ソルバが媒質データ(SVX)から膜の位置を計算する。 その膜とSPHの交わる所に指定した膜の
出力	物質濃度(場のデータ)	SPH	指定計算Step毎にファイルを出力。V-Isioで3次元アニメーションが 可能。
	物質濃度 (指定点の数値)	CSV	指定座標の指定計算Step毎の数値をテキストで出力(probe機能)

2013/7/30

RICS—K講習会 All Rights Reserved, Copyright 2013 Riken, Japan.

サンプルデータ(概要)

モデル概要:

[初期濃度]

[膜条件]

[代謝]

Aが媒質M1とM2の間の膜のチャネルを通ってM2からM1へ流入。

流入したAが分布しているE1と反応してBに変化(E1は拡散しない)。

BはM1内を拡散し、膜透過により、M2へ拡散していく。

R

E1

1000Stepでチャネルが閉口し、物質Aの流入が停止。

その他計算条件 ・1500Step

Aが媒質M1とM2の間の膜のチャネルを通ってM2からM1へ流入。

流入したAが分布しているE1と反応してBに変化(E1は拡散しない)。

空間領域:立方体の媒質M1(内側),M2(外側)から構成される空間

物質Aを通す(初期状態は開口。1000Stepで閉口。)(APIを使用)

BはM1内を拡散し、膜透過により、M2へ拡散していく。 1000Stepでチャネルが閉口し、物質Aの流入が停止。

・触媒E1は媒質M1(内側)の空間にばらばらに局在 ・物質Aが媒質M2(外側)の空間に均一に分布

・チャネル(物質A)が側面の両側の膜中央に局在。

媒質M1の代謝系(mat1.eml)

2013/7/30

RICS—K講習会 All Rights Reserved, Copyright 2013 Riken, Japan.

サンプルデータ(計算結果2)

・膜全体で物質Bが透過。

・E1を触媒として、AがBへと変化する。

6

7

5

Aが媒質M1とM2の間の膜のチャネルを通ってM2からM1へ流入。 流入したAが分布しているE1と反応してBに変化(E1は拡散しない)。 BはM1内を拡散し、膜透過により、M2へ拡散していく。 1000Stepでチャネルが閉口し、物質Aの流入が停止。

Copyright 2013 Riken, Japan.

媒質M1 物質A

RICS-K講習会 All Rights Reserved,

2013/7/30

RICS-K講習会 All Rights Reserved, Copyright 2013 Riken, Japan.

M1

M2

8

V-Isioを使って可視化: shaderVolren orthoScalar

Ricsプリシステム

① Volume Maker

基本的な形状(SPHデータ)を作成し、出力する。

③Rics Merge 選択したsvxの和、差、積のボリューム演算を行う。

ボリューム演算によって a -a -b & a a b a b 修正するデータを選択後、 MIRM MIRM RICS Merge ボタンを押す。 形状編集 (Rics merge) ーボリューム演算ー dipkata. clointe rectinear RICS merge RICS Assampling 注1)データの修正 RICS Mergeを行った場合、先に選択 したSVXデータが修正される。 注2)データの種類 物質の濃度等、SPHとして使用した い場合、File-Export で出力する。

2013/7/30

選択した媒質(SVX)の領域

内にランダムに配置する。

注1)配置場所

RICS-K講習会 All Rights Reserved, Copyright 2013 Riken, Japan. 6

